W University of WASHINGTON

Partial Information Decomposition

PID explains how information about a message, M, is represented by two other variables X and Y

Unique to $X \quad$ Unique to Y $I(M:(X, Y))=U I(M: X \backslash Y)+U I(M: Y \backslash X)$ $+R I(M: X ; Y)+S I(M: X ; Y)$

Note:

Redundant Synergistic
$U I, S I, R I \geq 0$
(Williams \& Beer 2010; Bertschinger et al. 2014)

Motivating Example

$$
\begin{aligned}
M & =\left[M_{1}, M_{2}, M_{3}\right] \\
X & =\left[M_{1}, M_{2}, M_{3}+Z\right] \\
Y & =\left[M_{2}, Z\right]
\end{aligned}
$$

 Where? $M=$ Visual stimulus 1 bit each of $U I$ in $X, R I$ and $S I ; 0$ bits of $U I$ in Y

Why use PID?

(Schneidman et al. 2003; Pica et al. 2017)

- Measuring redundancy between two brain regions (e.g., testing efficiency of a neural code)
- Can help understand functional organization
- Can help distinguish between different hypotheses about encoding/computation

Quantifying Unique Information

When is Unique Information in X w.r.t. Y zero?
If you can create a "copy" of X (call it X^{\prime}) using Y alone: X^{\prime} and M should have the same joint statistics as X and M

Transform to create the copy X^{\prime} from Y
If you cannot create an exact copy, then X has $U I$ w.r.t. Y : quantify it by minimizing the "distance" betw. $p\left(X^{\prime} \mid M\right)$ and $p(X \mid M)$, and measuring the gap

Gaussian Partial Information Decomposition: Quantifying Inter-areal Interactions in High Dimensional Neural Data
Praveen Venkatesh ${ }^{1,3}$, Gabe Schamberg², Adrienne Fairhall${ }^{3}$, Shawn Olsen ${ }^{1}$, Stefan Mihalas ${ }^{1}$, Christof Koch ${ }^{1}$ ${ }^{1}$ Allen Institute, Mindscope Program; ${ }^{2}$ Massachusetts Institute of Technology, ${ }^{3}$ Dept. of Physiology \& Biophysics, University of Washington, Seattle

Gaussian Partial Info Decomposition

Unique information in X :

$$
\delta(M: X \backslash Y)=\min _{p\left(x^{\prime} \mid y\right)} \mathbb{E}_{M}\left[D_{K L}\left(p(x \mid M) \| p\left(x^{\prime} \mid M\right)\right)\right]
$$

Taking M, X and Y to be jointly Gaussian, and parameterizing $p\left(x^{\prime} \mid y\right)$ using a Gaussian transform:

$$
\begin{array}{cc}
M \sim \mathcal{N}(0, I) & X \mid M \sim \mathcal{N}\left(H_{X} M, \Sigma_{X \mid M}\right) \\
p\left(x^{\prime} \mid y\right)=\mathcal{N}\left(T \cdot y, \Sigma_{T}\right) & Y \mid M \sim \mathcal{N}\left(H_{Y} M, \Sigma_{Y \mid M}\right) \\
\delta_{G}(M: X \backslash Y)=\min _{T, \Sigma_{T} \geqslant 0} \mathbb{E}_{M}\left\|\left(H_{X}-T H_{Y}\right) M\right\|_{T T^{T}+\Sigma_{T}}^{2} \\
& +\operatorname{Tr}\left(\left(T T^{T}+\Sigma_{T}\right)^{-1}\right)+\log \operatorname{det}\left(T T^{T}+\Sigma_{T}\right)-d_{X}
\end{array}
$$

Approximate solution: (Schamberg \& Venkatesh, 2021)

$$
\hat{T}=\underset{T}{\arg \min } \mathbb{E}_{M}\left\|\left(H_{X}-T H_{Y}\right) M\right\|_{I+H_{X} H_{X}^{T}}^{2}
$$

$$
\text { s.t. } \quad I+H_{X} H_{X}^{T}-T\left(I+H_{Y} H_{Y}^{T}\right) T^{T} \succcurlyeq 0
$$

PID vs. Other Techniques

Techniques for measuring "unique explained variance" typically conflate unique and synergistic information:

$$
\begin{array}{lc}
M=\alpha_{1} Y+\epsilon_{1} & U E V=\operatorname{Var}\left(\epsilon_{2}\right)-\operatorname{Var}\left(\epsilon_{1}\right) \\
M=\alpha_{2} Y+\beta_{2} X+\epsilon_{2} & \text { (Conditional info in } X)
\end{array}
$$

PID captures unique, not conditional information:

$$
I(M ; X)=U I(M: X \backslash Y)+R I(M: X ; Y)
$$

$$
I(M ; X \mid Y)=U I(M: X \backslash Y)+S I(M: X ; Y)
$$

Accuracy \& Speed of Gaussian PID

- First available method for computing this definition: how do you evaluate?
- Relatively few estimators / computation methods of other "good" PID definitions

> (Bertschinger et al. 2014; Banerjee et al. 2018)

Accuracy

Compare with Bertschinger et al. PID for discrete variables: approximate a multivariate Poisson as Gaussian using its joint covariance matrix

$$
M_{1}, M_{2} \sim \operatorname{Poiss}\left(\lambda_{M}\right)
$$

$$
X \sim \operatorname{Bin}\left(M_{1}, w_{X 1}\right)+\operatorname{Bin}\left(M_{2}, w_{X 2}\right)+\operatorname{Poiss}\left(\lambda_{X}\right)
$$

$$
Y \sim \operatorname{Bin}\left(M_{1}, w_{Y 1}\right)+\operatorname{Bin}\left(M_{2}, w_{Y 2}\right)+\operatorname{Poiss}\left(\lambda_{Y}\right)
$$

Values and trends of the two methods are consistent

Speed
No. of convex optimization variables (complexity): Bertschinger et al.: $O\left(K^{d}\right) \quad d=$ Dimensionality
Ours: $O\left(d^{2}\right)$

Simulation with Spiking Neurons

Simulate spiking neurons with different connectivity architectures and examine PID profiles

- Three groups of 20 neurons each, (Katselis et al. interconnected as shown below 2016)
- Covariance matrices computed on short windows of random spiking activity
- Approximate Gaussian PID values computed from covariances

Interactions between Visual Areas

Allen Institute Visual Coding Neuropixels dataset (Siegle et al. 2021: https://portal.brain-map.org/ explore/circuits/visual-coding-neuropixels)

Measure PID profiles between three sets of mouse visual brain areas: 1. (VISp, VISI, LP), 2. (VISp, VISI, VISal) and 3. (VISp, VISI, VISam)

> PID of VISp -> (VISI, Y)
(23 sessions, avg. 126 units/session)

More unique info in VISI in (1); more redundant info between VISI and VISal/am in (2) and (3)

Hypothesis: VISp is less strongly connected with subdomains of LP targeted in this dataset, compared to connections between VISp and VISal or VISam.

References
Williams, P. L., \& Beer, R. D. (2010). Nonnegative decomposition of multivariate information. arXiv preprint arXiv:1004.2515.
2. Bertschinger, N., Rauh, J., Olbrich, E.,., Jost, J., \& Ay, N. (2014). Quantifying unique information. Entropy, 16(4), 2161-2183.
3. Schneidman, E., Bialek, W., \& Berry, M. J. (2003). Synergy, redundancy, and
didependence in population codes. Journal of Neuroscience, 23(37), 11539-11553
4. Pica, G.., Piasini, E., Safaai, H., Runyan, C., Harvey, C., Diamond, M., ... \& Panzeri, S.
(2017). Quantifying how much sensory information in a neural code is relevant for behavior. Advances in Neural Information Processing Systems, 30 .
5. Schamberg, G., \& Venkatesh, P. (2021). Partial Information Decomposition via Deficiency for Multivariate Gaussians. arXiv preprint arXiv:2105.00769.
6. Banerjee, P. K.,. Rauh, J., \& Montutarar, G. (2018, June). Computing the unique information. In 2018 IEEE International Symposium on Information Theory (ISIT) (pp. 141-145). IEEE. 7. Siegle, J. H., Jia, X., Durand, S., Gale, S., Bennett, C., Graddis, N., ... \& Koch, C. (2021). Survey of spiking in the mouse visual system reveals functional hierarchy. Nature, 592(7852), 86-92.
8. Katselis, D., Beck, C. L., \& Srikant, R. (2018). Mixing times and structural inference for bernoulli autoregressive pro
Engineering, $6(3)$, 364-378.
9. Brain by Laymik from NounProject.com (https://thenounproject.com/icon/brain-2937631)

