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What do we Want to Measure?

(Almeida et al., 2013)
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Message 𝑀 is the stimulus

Conditioning on the other edge (Z)
reveals the information flow!

Information flows on an edge 𝐸𝑡 if 
∃ ℰ𝑡

′ ⊆ ℰ𝑡 s.t. 𝐼 𝑀; 𝑋 𝐸𝑡 | 𝑋(ℰ𝑡
′) > 0
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In Search of a Definition

Candidate Definition I: 
Mutual Information

Information flows on an edge 𝐸𝑡 if 
its transmission depends on 𝑀
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Condition on a
subset of edges

Information Paths: Proof Sketch
∃ no 𝑀-information path from 𝑉0

𝑖𝑝
to 𝑉𝑡

𝑜𝑝
⇒ Transmissions of 𝑉𝑡
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cannot depend on 𝑀
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Theorem: If the transmissions of an “output” node 𝑉𝑡
𝑜𝑝

depend on 𝑀, 

then there is an 𝑀-information path leading from the input nodes to 𝑉𝑡
𝑜𝑝

𝑴-information path:
A path, every edge of which has 𝑀-information flow

Information Flow vs. Granger Causality
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(Novel measures of bias: Dutta, Venkatesh et al., AAAI 2020)

Partial Information Decomposition (PID)
𝐼 𝑀: 𝑋, 𝑌 = 𝑈𝐼 𝑀:𝑋 ∖ 𝑌 + 𝑈𝐼 𝑀: 𝑌 ∖ 𝑋 + 𝑅𝐼 𝑀:𝑋; 𝑌 + 𝑆𝐼(𝑀: 𝑋; 𝑌)

Unique to X SynergisticUnique to Y Redundant

⇒ We need to measure edges!

Theory can give rise to
new insights and problems

in neuroengineering

Can we measure only nodes? (Assume nodes multicast)
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Can’t differentiate these two cases 

Interventions will produce
different effects!

Existence of Information Paths

Implications for Neuroengineering

AI: Fairness and Explainability

(Venkatesh et al. arXiv
2019; IEEE Trans. IT sub.)

(Venkatesh & Grover, Allerton 2015)
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components

(Venkatesh et al., ISIT 2019; arXiv 2019; IEEE Trans. IT sub.)
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Animal’s location

The PID provides fine-grained 
inferences on information flow

(Venkatesh and Grover, Cosyne 2020, accepted)

(Williams and Beer, 2010; Bertschinger et al., 2014; Schneidman et al., 2003)
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(Patolsky et al., Science 2006)
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𝑉𝑎𝑟 𝜖

𝑉𝑎𝑟 ǁ𝜖
→ ∞ !!

Quantifying information 
flow can reveal the 

asymmetry between the 
transmitter and the 

receiver

Dirn. of greater 
GC influence can 
be opp. intuitive 
dirn. of info flow

Information about animal location 
can be encoded uniquely, 

redundantly or synergistically, 
depending on whether or not 

error-correction is in effect

PID in Grid Cells Neurons used in spatial navigation; use a robust “modulo 
code” to represent information about animal location


