
This poster uses Grid Cells as an example to motivate how the Partial 
Information Decomposition can provide fine-grained inferences about 

information flows
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Brain areas, with feedback

Edges’ transmissions observed

Message 𝑀 is the stimulus

Information flows on an edge 𝐸𝑡 if 
∃ ℰ𝑡

′ ⊆ ℰ𝑡 s.t. 𝐼 𝑀; 𝑋 𝐸𝑡 | 𝑋(ℰ𝑡
′) > 0

Final Definition

Condition on a subset of edges

Is mutual information sufficient 

to capture information flow 

along individual edges of a 

computational circuit?
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If the transmissions of an “output” 

node 𝑉𝑡
𝑜𝑝

depend on 𝑀, then there is 

an 𝑀-information path leading from 

the input nodes to 𝑉𝑡
𝑜𝑝

Information Flow vs. Granger Causality
Error in 

estimate

Best estimate
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𝑍𝑖 ~ 𝑁(0, 𝜎2)
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What is the Partial Information
Decomposition (PID)?

𝐼 𝑀: 𝑋, 𝑌 = 𝑈𝐼 𝑀: 𝑋 ∖ 𝑌 + 𝑈𝐼 𝑀: 𝑌 ∖ 𝑋 + 𝑅𝐼 𝑀:𝑋; 𝑌 + 𝑆𝐼(𝑀: 𝑋; 𝑌)

Unique to X SynergisticUnique to Y Redundant

(Venkatesh et al. arXiv 2019; IEEE Trans. IT sub.)

(Venkatesh & Grover, Allerton 2015)

(Venkatesh et al., ISIT 2019; arXiv 2019; IEEE Trans. IT sub.)
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Quantifying information flow can 
reveal the asymmetry between the 

transmitter and the receiver

Dirn. of greater GC 
influence can be opp. 

intuitive dirn. of info flow

Information about animal location can be encoded uniquely, redundantly or synergistically, 
depending on whether or not error-correction is in effect

Neurons used in spatial navigation; use a robust “modulo code” to represent information 
about animal location

Synergy and Information Flow

Case study: Grid cells

Information Flow and
Finer Information Structure

An extension of mutual information to three variables: decomposing the 
information that X and Y carry about a message M into information that is 

uniquely present in each, redundantly present in both, and synergistic

Formal Definition

Operational meaning

There are many definitions for these quantities: we use the one of 
Bertschinger et al. (2014):

𝑈𝐼 𝑀 ∶ 𝑋 ∖ 𝑌 = min
𝑄∈Δ𝑃

𝐼𝑄 𝑀 ∶ 𝑋 𝑌)

𝐼 𝑀: 𝑋, 𝑌

𝐼 𝑀: 𝑌𝐼 𝑀: 𝑋

𝑈𝐼𝑋 𝑈𝐼𝑌𝑅𝐼𝑆𝐼

𝑌 has no unique information 

about 𝑀 with respect to 𝑋

if and only if

you would always prefer to have 

𝑋 rather than 𝑌 to make 

inferences about  𝑀

Location

Hippocampus

Entorhinal
Cortex

Existing tools for 
information flow, such as 

Granger Causality and 
Transfer Entropy

don’t explain what the 
information is about, and 
don’t describe unique and 

redundant components

Uniqueness and Redundancy

Synergy

(Sreenivasan and Fiete, 2011)

(Williams and Beer, 2010; Bertschinger et al., 2014; Schneidman et al., 2003)

Δ𝑃 = 𝑄:𝑄 𝑚, 𝑥 = 𝑃 𝑚, 𝑥 , 𝑄 𝑚, 𝑦 = 𝑃 𝑚, 𝑦

𝜆1 𝜆2 𝜆3 Networks with different 
wavelengths, each 

network uses a 
population code to 

encode the “phase” of 
the animal’s location, to 
within this wavelength

𝜆 = (3,4,5) 𝜆 = (3,4,5) 𝜆 = (9,10,11)
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Only unique information when 𝑅 = Π 𝜆𝑖. Redundancy appears for a reduced encoding range

Uniqueness decreases and synergy increases for information at coarser spatial “resolutions”, 𝑟
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Synergy is more “brittle” to noise

Residual uncertainty about location when 
given individual, pairs, and finally, all three 

wavelengths, 𝜆 = (3, 4, 5)
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