

Understanding Encoding and Redundancy in Grid Cells using the Partial Information Decomposition

Dept. of Electrical and Computer Engineering, and the Center for the Neural Basis of Cognition, Carnegie Mellon University

Information Flow and Finer Information Structure

What is the Partial Information Decomposition (PID)?

An extension of mutual information to three variables: decomposing the information that X and Y carry about a message M into information that is uniquely present in each, redundantly present in both, and synergistic

 $I(M:(X,Y)) = UI(M:X \setminus Y) + UI(M:Y \setminus X) + RI(M:X;Y) + SI(M:X;Y)$ Unique to X Unique to Y Redundant Synergistic

(Williams and Beer, 2010; Bertschinger et al., 2014; Schneidman et al., 2003)

Formal Definition

There are many definitions for these quantities: we use the one of Bertschinger et al. (2014):

$$UI(M:X \setminus Y) = \min_{Q \in \Lambda_P} I_Q(M:X \mid Y)$$

 $\Delta_P = \{Q: Q(m, x) = P(m, x), Q(m, y) = P(m, y)\}$

Operational meaning

Y has *no* unique information about M with respect to Xif and only if you would *always* prefer to have X rather than Y to make inferences about M

Praveen Venkatesh and Pulkit Grover

This poster uses Grid Cells as an example to motivate how the Partial Information Decomposition can provide fine-grained inferences about information flows

Also: I'm looking for a postdoc position!

Case study: Grid cells

Neurons used in spatial navigation; use a robust "modulo code" to represent information about animal location

Information about animal location can be encoded uniquely, redundantly or synergistically, depending on whether or not error-correction is in effect

Uniqueness and Redundancy

Networks with different wavelengths, each network uses a population code to encode the "phase" of the animal's location, to within this wavelength

- Animal's location (Sreenivasan and Fiete, 2011)

wavelengths, $\lambda = (3, 4, 5)$

Range R = 12, Res r = 1Range R = 90, Res r = 1Range R = 60, Res r = 1Range R = 990, Res r =3.5 $\lambda = (3,4,5)$ ¹⁰ $\lambda = (3,4,5)$ $\lambda = (9, 10, 11)$ - Unique ---- Redundant Synergistic — Total mutual info $\lambda = (9, 10, 11)$ 0.2 0.1 0.2 0.1 0.2 0.0 Variance Variance Variance Variance

Only unique information when $R = \Pi \lambda_i$. Redundancy appears for a reduced encoding range

Synergy

Synergy is more "brittle" to noise

Acknowledgments

Praveen Venkatesh was supported in part by a CIT Dean's Tuition Fellowship, a Henry L. Hillman Presidential Fellowship, the Dowd Fellowship from the College of Engineering and a Fellowship in Digital Health from the Center for Machine Learning and Health at Carnegie Mellon University.

References

- 1. P. Venkatesh, S. Dutta and P. Grover, "Information Flow in Computational Systems", arXiv:1902.02292 [cs.IT], February 2019; IEEE Trans. IT (submitted).
- 2. P. Venkatesh, S. Dutta and P. Grover, "How should we define Information Flow in Neural Circuits?", *ISIT*, July 2019. 3. P. Venkatesh and P. Grover, "Is the direction of greater Granger causal influence the same as the direction of information flow?", Allerton, September 2015.
- 4. N. Bertschinger, J. Rauh, E. Olbrich, J. Jost, and N. Ay, "Quantifying Unique Information", *Entropy*, 16 (4), 2161–2183, 2014.
- 5. E. Schneidman, W. Bialek, and M. Berry, "Synergy, Redundancy and Independence in Population Codes", J. Neurosci., 27 (37), 11539–11553, 2003.
- 6. S. Sreenivasan and I. Fiete, "Grid cells generate an Analog Error Correcting Code for Singularly Precise Neural Computation", Nature Neuroscience, 14 (10), 1330–1337, 2011.