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What do we want to measure?

(Almeida et al., 2013)
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(M.I. Posner, 1980) (Sreenivasan and Fiete, 2011)
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Message is the stimulus

(Thompson, 1980; Ahlswede et al., 2000; Peters et al., 2016)

In Search of a Definition
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Information Flow and Feedback

Discovering Hidden Nodes
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“Causally relevant” 

hidden nodes will often 

break Markov chains

Quantifying information flow can reveal the asymmetry between the transmitter and the receiver

Bob’s transmissions are M-derived from Alice’s transmissions,
but Alice’s transmissions are not M-derived from Bob’s transmissions

(Venkatesh 
et al. 2019)

Candidate Definition I: 
Mutual Information

Information flows on an edge 𝐸𝑡
if its transmission depends on 𝑀

𝐼 𝑀;𝑋 𝐸𝑡 > 0

Conditioning on the other edge (Z)

reveals the information flow!

Information flows on an edge 𝐸𝑡 if 
∃ ℰ𝑡

′ ⊆ ℰ𝑡 s.t. 𝐼 𝑀; 𝑋 𝐸𝑡 | 𝑋(ℰ𝑡
′) > 0.

Final Definition: Condition on a subset of edges

Candidate Definition II: 
Conditional Mutual Info 𝐼 𝑀; 𝑋 𝐸𝑡 | 𝑋(𝐸𝑡

′) > 0

𝐼 𝑀; 𝑋 𝐸𝑡 > 0 or

- Info flow between
brain regions

- Information is 
about a stimulus

- Feedback info-
flow possible

- Synergistic info-
flow possible

(Schneidman et al., 2003)

The direction of greater Granger causal influence can be 
opposite to the direction of information flow

(Venkatesh and Grover, Allerton & SfN, 2015)

Previous Approaches
Granger Causality, Transfer Entropy, Directed Information
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Information Paths

If the transmissions of an “output” 

node 𝑉𝑡
𝑜𝑝

depend on 𝑀, then there 
is an 𝑀-information path leading 

from the input nodes to 𝑉𝑡
𝑜𝑝

.

𝑴-information path:
Every edge has 𝑀-information flow

Causal Effect and Info Flow

Some counterfactual causal effects are captured by

M-information flow: even if there is no average causal effect
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