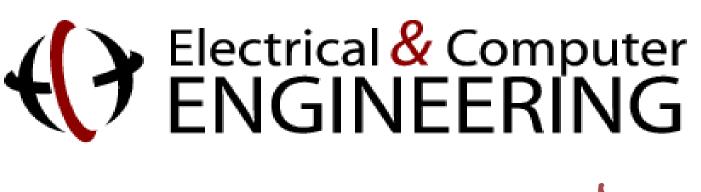


Contact: vpraveen@cmu.edu

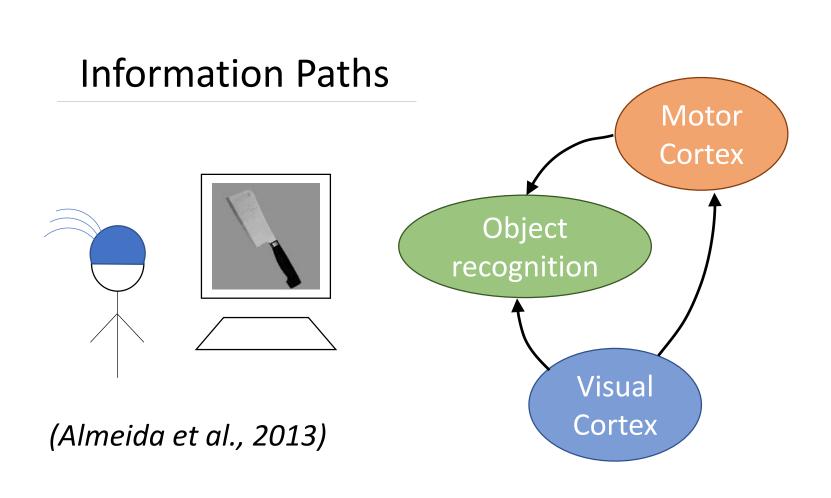
An Information-theoretic Framework for **Examining Information Flow in the Brain**

Praveen Venkatesh and Pulkit Grover

Dept. of Electrical and Computer Engineering, and the Center for the Neural Basis of Cognition, Carnegie Mellon University



What do we want to measure?

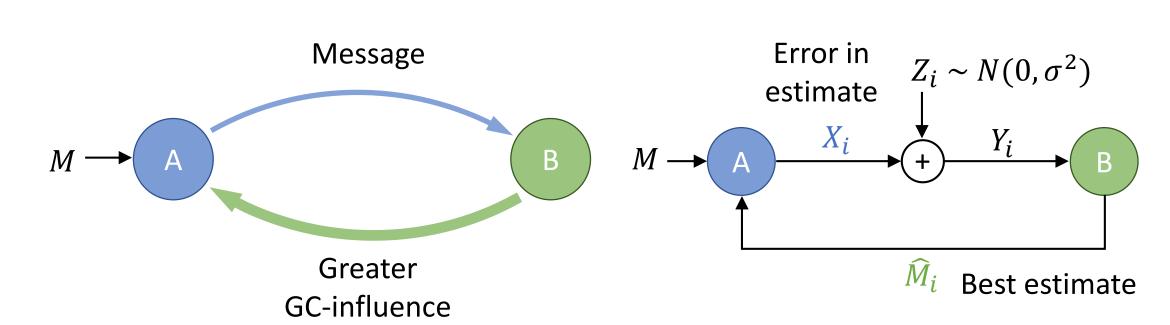


- Info flow between brain regions
- Information is about a stimulus
- Feedback infoflow possible
- Synergistic infoflow possible

(Sreenivasan and Fiete, 2011) (Schneidman et al., 2003)

Previous Approaches

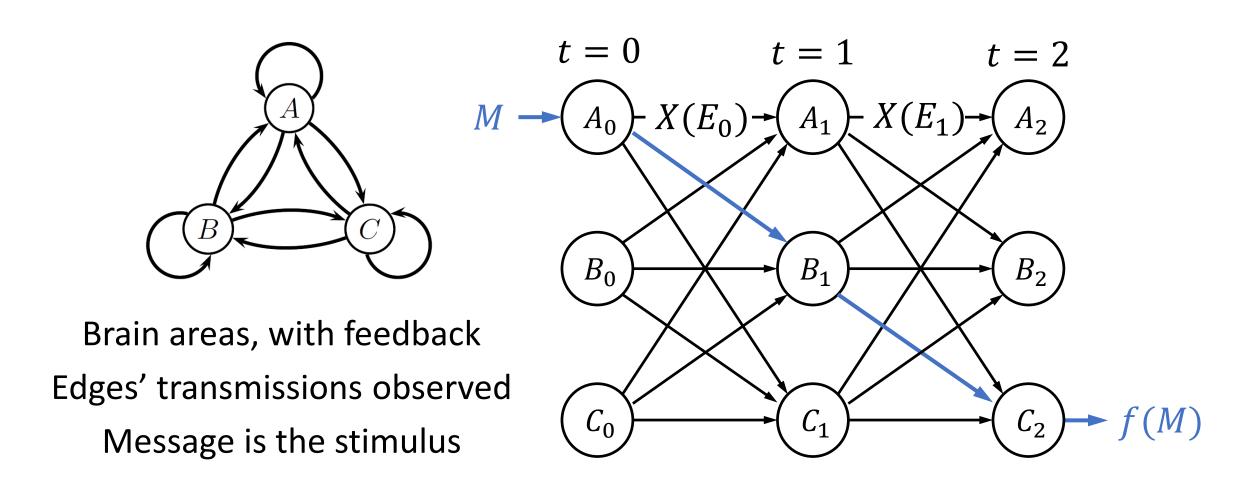
Granger Causality, Transfer Entropy, Directed Information



The direction of greater Granger causal influence can be opposite to the direction of information flow

(Venkatesh and Grover, Allerton & SfN, 2015)

A Computational Model



(Thompson, 1980; Ahlswede et al., 2000; Peters et al., 2016)

In Search of a Definition

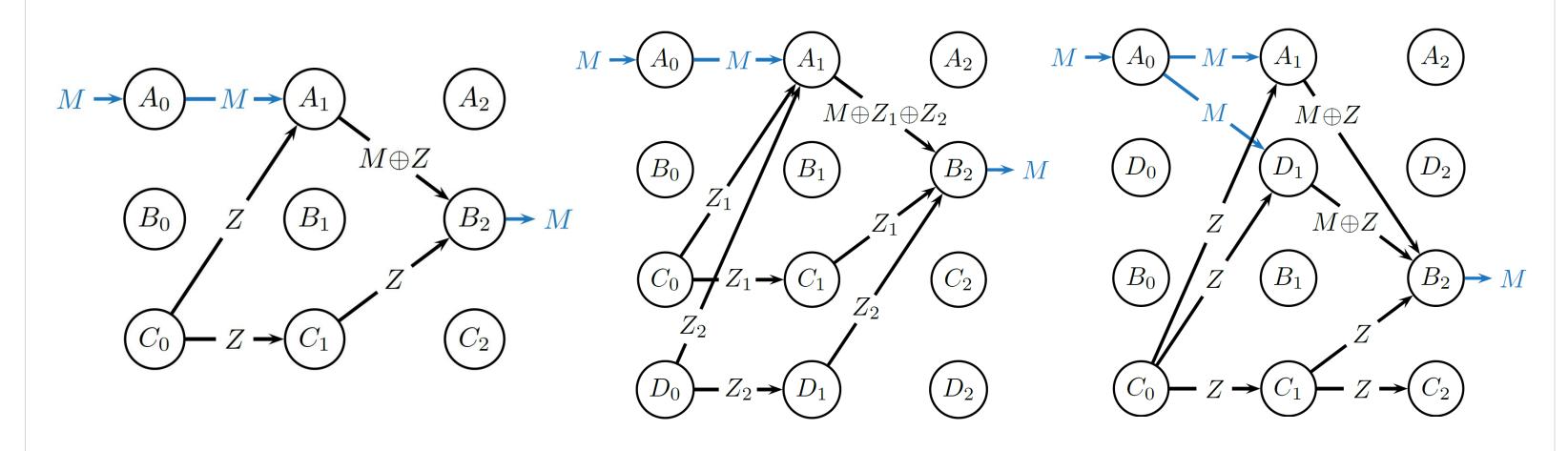
Candidate Definition I: Mutual Information

Information flows on an edge E_t if its transmission depends on M

 $I(M; X(E_t)) > 0$

Candidate Definition II: Conditional Mutual Info Conditioning on the other edge (Z) reveals the information flow!

 $I(M; X(E_t)) > 0$ or $I(M; X(E_t) \mid X(E_t')) > 0$



Final Definition: Condition on a *subset* of edges

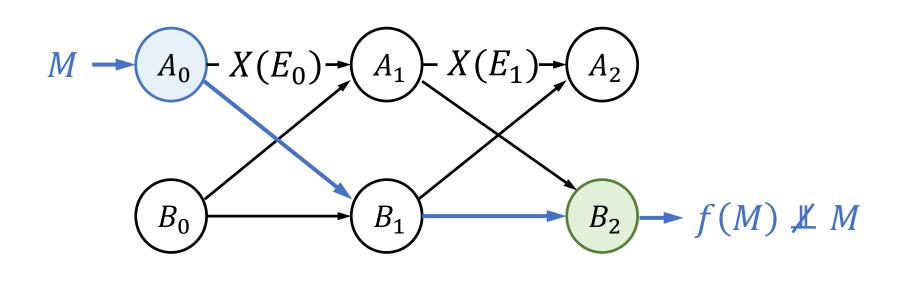
Information flows on an edge E_t if $\exists \mathcal{E}'_t \subseteq \mathcal{E}_t \text{ s.t. } I(M; X(\mathcal{E}_t) \mid X(\mathcal{E}'_t)) > 0.$

Information Paths

M-information path:

Every edge has M-information flow

If the transmissions of an "output" node V_t^{op} depend on M, then there is an M-information path leading from the input nodes to V_t^{op} .

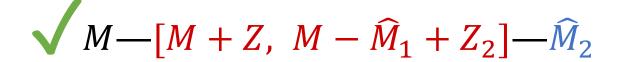


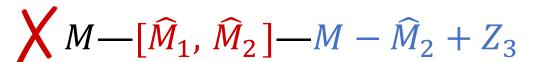
Information Flow and Feedback

Derived Information can reveal the asymmetry between the transmitter and the receiver (Venkatesh and Grover, 2015) $M - X(P_{t'}) - X(Q_t)$

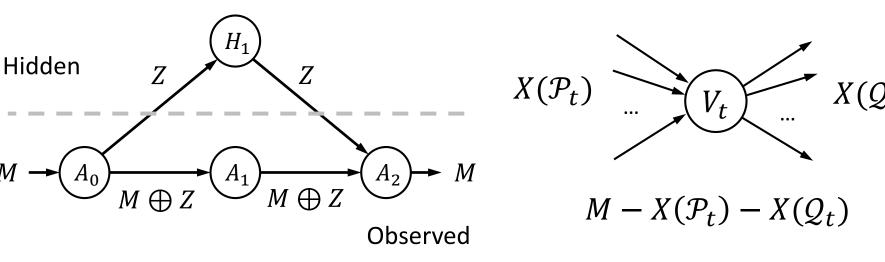
 $M-M_1+Z_2$

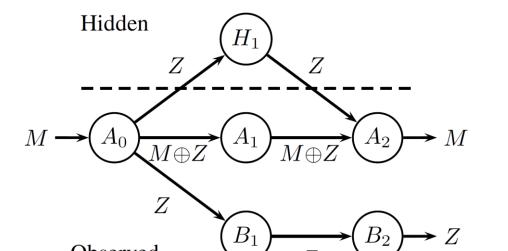
Bob's transmissions are M-derived from Alice's transmissions, but Alice's transmissions are *not* M-derived from Bob's transmissions





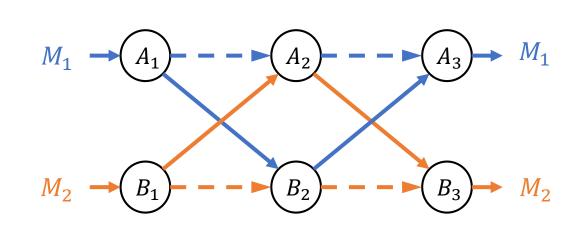
Discovering Hidden Nodes





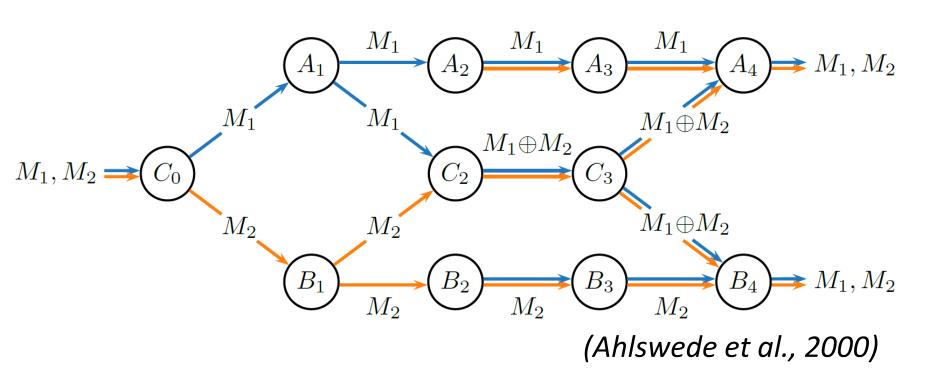
"Causally relevant" hidden nodes will often break Markov chains

Information Flow in ANNs



We can distinguish how information flows in small toy neural networks, which have known ground truth

Multiple Messages



Acknowledgments

This work was done in collaboration with Sanghamitra Dutta. PV was partially supported by a Fellowship in Digital Health from the Center for Machine Learning and Health, CMU.

References

- 1. P. Venkatesh, S. Dutta and P. Grover, "Information Flow in Computational Systems", arXiv:1902.02292 [cs.IT], February 2019.
- 2. P. Venkatesh, S. Dutta and P. Grover, "How should we define Information Flow in Neural Circuits?", ISIT, July 2019 (accepted).
- 3. P. Venkatesh and P. Grover, "Is the direction of greater Granger causal influence the same as the direction of information flow?", Allerton, September 2015.
- 4. J. Almeida et al., "Tool manipulation knowledge is retrieved by way of the ventral visual object processing pathway", Cortex, 49 (9), 2334–2344, 2013.
- 5. M. I. Posner, "Orienting of Attention", Quart. J. of Exp. Psychol., 32(1), 3–25, 1980.
- 6. S. Sreenivasan and I. Fiete, "Grid cells generate an analog error-correcting code for singularly precise neural computation", Nature neuroscience, 14.10: 1330, 2011.
- 7. E. Schneidman, W. Bialek and M. Berry, "Synergy, Redundancy and Independence in Population Codes", J. Neurosci., 23(37), 11539–11553, 2003.