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Current dipoles
produce electric
potentials on the scalp
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Sensor density for imaging

The sensor density needed for reconstructing the
scalp potential is different from that needed to

recover the brain signal!

Simulation results (Grover et. al., "15)
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Numerically computed lower bound vs.

EEG would be unequivocally the best modality, if
its spatial resolution could be improved!

Spatial low-pass filtering

The skull and scalp act like a low-pass filter
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UHD-EEG proof of concept

Experiments based on self instrumented system
with ~

High frequencies are

1cm inter-electrode distance.
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Left stimuli
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frequency stimuli in the left and right visual fields.
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Source Localization

Reconstructions averaged over several trials
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Equalization-based algorithms are also more
robust in the presence of higher brain noise
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Equalization-based algorithms achieve a lower bias and
lower widths of the Point Spread Function (PSF) when
recovering the location of a single dipole.
Equalization takes advantage of greater sensor density.

Hierarchical referencing

Information-theoretic strategy to exploit spatial
correlations to reduce circuit volume and power
while obtaining high-resolution signal

(Grover and Venkatesh, Proc. IEEE ‘17)
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