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Abstract—Partial information decompositions (PIDs), which
quantify information interactions between three or more vari-
ables in terms of uniqueness, redundancy and synergy, are
gaining traction in many application domains. However, our
understanding of the operational interpretations of PIDs is still
incomplete for many popular PID definitions. In this paper, we
discuss the operational interpretations of unique information
through the lens of two well-known PID definitions. We reexam-
ine an interpretation from statistical decision theory showing how
unique information upper bounds the risk in a decision problem.
We then explore a new connection between the two PIDs, which
allows us to develop an informal but appealing interpretation,
and generalize the PID definitions using a common Lagrangian
formulation. Finally, we provide a new PID definition that is able
to capture the information that is unique. We also show that it
has a straightforward interpretation and examine its properties.

The full version of this paper is available online [1].

I. INTRODUCTION

Partial information decompositions (PIDs) have become a
popular method for understanding the information interactions
between multiple random variables. A bivariate PID seeks to
decompose the information that two variables X and Y convey
about a message M , into parts that are unique to X , unique
to Y , redundant to X and Y , and synergistic [2]–[4].

As a simple example, consider a message M = [M1, M2,
M3, M4], and two variables X = [M1, M3, M4 ⊕ Z] and
Y = [M2, M3, Z], where Mi, Z ∼ i.i.d. Ber(1/2) and ⊕
represents an XOR operation between bits. Here, X has one
bit of unique information about M , i.e., M1, which is not
present in Y . Similarly, Y has one bit of unique information
about M , i.e., M2, which is not present in X . There is one
bit of redundant information, i.e., M3, which can be extracted
from either X or Y taken alone. Finally, there is one bit of
synergistic information, i.e., M4: this information cannot be
extracted from either X or Y individually, but can be recovered
when both are taken together.

PIDs have found applications in various fields, from neuro-
science [5], [6] (where one may want to examine the interaction
between stimuli, neural activity and behavioral response) to
financial markets [7]. PIDs have also been used to explain how
information complexity decreases through the layers of a deep
neural network [8], as well as by us to develop new measures
of fairness in machine learning [9].

Despite increasingly widespread adoption, there is still
no consensus on how PIDs should be defined, and even
more so, on how to operationally interpret partial information
quantities (e.g., see [10], [11]). In this paper, we focus on

interpretations of unique information. What do we mean by
an operational interpretation here? In essence, we would like
to make formal a statement of the variety “X has access to u
bits of information about M that Y does not have access to”.
A concrete operational interpretation would mathematically
define terms like “having access” within a certain context.

One popular approach for operational interpretations has
relied on the concept of Blackwell sufficiency from statistical
decision theory. Blackwell sufficiency is a formal way to
determine whether X contains all of the information that Y has
about M . Thus, it becomes a natural basis for discussing how
two variables carry information about a message.1 Bertschinger
et al. [4] used Blackwell sufficiency to motivate a definition
of unique information. But their interpretation only addressed
whether the unique information was zero or non-zero, and
did not provide an interpretation for the quantity of unique
information. More recently, Banerjee et al. [3] and Rauh et
al. [12] interpreted the quantification of unique information as
an upper bound on a “secret key rate”, which is well-defined
in the context of information-theoretic security. However,
such an interpretation is less well-defined other contexts like
neuroscience, where there is no clear analog for an eavesdropper
or a secret key.

In this paper, we consider two PID definitions based on
Blackwell sufficiency [3], [4], and discuss a more broadly
applicable operational interpretation of the quantity of unique
information in each case. Extending classical results on so-
called “deficiency” measures [13], [14], it can be shown that the
unique information about M present in X w.r.t. Y upper bounds
the difference in risk attained in a decision problem, when one
uses X rather than Y to make decisions pertaining to M . This
interpretation was also stated in passing by Banerjee et al. [3];
we believe this is a more broadly applicable interpretation, and
hence place renewed emphasis on it here (Sections III-A and
III-B). In the process, we also explicitly discuss gaps in our
understanding that are yet to be filled (Section III-C).

We then identify a previously unrecognized connection
between the aforementioned PIDs, which shows that the two
definitions swap the objective and constraint in their respective
optimizations (Section III-D). This discovery allows us to
clarify how these definitions are related to Blackwell sufficiency,
and provide an informal but appealing interpretation for them
(Section III-E). Finally, we develop a novel generalization of

1For example, Kolchinsky [11] uses it to operationalize measures of
redundancy and “union” information.
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the two PIDs, through a common Lagrangian (Section III-F).
Going beyond operational interpretations, we would also

like to know what the unique information is, not just how
much there is. Towards this, in Section IV, we propose a
new PID definition (which we had hinted at in our previous
work [15]) that “captures” the part of M that is unique in
the form of a random variable. We show that it forms a valid
non-negative decomposition obeying intuitive bounds, and that
it has a simple and appealing interpretation. We also show that
this PID definition is Blackwellian [16] when M , X and Y
are jointly Gaussian.

II. BACKGROUND

A. Notation

• Let M , X and Y be three random variables with sample
spaces M, X and Y respectively, and joint density PMXY .

• Let C(A |B) denote the set of all channels (conditional dis-
tributions) from A to B, so for example, PX|M ∈ C(X |M).

• Let ◦ denote composition of channels, i.e. ∀ a ∈ A, c ∈ C,

(PA|B ◦ PB|C)(a | c) :=

∫
B

PA|B(a | b) · PB|C(b | c) db.

• To keep the exposition simple, we ignore any measure-
theoretic nuances. All conditional distributions and informa-
tion measures are assumed to be well-defined.

B. Defining PIDs

There are many notions of partial information decomposi-
tions: we focus here on the bivariate case, which decomposes
the information that two variables X and Y have about
a message M . Such a PID is typically defined by a set
of four functions of the joint distribution PMXY —denoted
UI(M : X \ Y ), UI(M : Y \ X), RI(M : X;Y ) and
SI(M : X;Y ) (or UIX , UIY , RI and SI respectively for
brevity)—which satisfy the following basic equations:

I
(
M ; (X,Y )

)
= UI(M : X \ Y ) + UI(M : Y \X)

+RI(M : X;Y ) + SI(M : X;Y ), (1)

I
(
M ;X

)
= UI(M : X \ Y ) +RI(M : X;Y ), (2)

I
(
M ;Y

)
= UI(M : Y \X) +RI(M : X;Y ). (3)

Equation (1) implies that the total mutual information about M
conveyed by X and Y is the sum of four partial information
components: one unique to X , one unique to Y , another
redundant to both X and Y , and the last which is synergistic,
respectively. Equations (2) and (3) enforce that the individual
mutual information of X or Y with M is the sum of the redun-
dant information and the corresponding unique information.2

These equations impose three constraints on the four partial
information components, such that defining any one component
suffices to specify the other three.

In this paper we discuss the operational interpretations of
two existing PID definitions due to [3] and [4] in Section III,
and then introduce a new PID definition in Section IV. We

2Typically, it is also assumed that the redundant and synergistic components
are symmetric in X and Y .

begin by stating the first two definitions, and defining the
concept of Blackwell sufficiency upon which they are based.

Definition 1 (δ-PID [3]). Let the (weighted output) deficiency3

of Y with respect to X about M be defined as4

δ(M : X\Y ) := inf
PX′|Y ∈C(X|Y)

EPM

[
D(PX|M ‖PX′|Y ◦PY |M )

]
. (4)

Then, the deficiency-based redundant information about M
present in X and Y is given by

RIδ(M : X;Y ) := min{I(M ;X)− δ(M : X \ Y ),

I(M ;Y )− δ(M : Y \X)}.
(5)

Using equations (1)–(3), RIδX fully determines the δ-PID,
i.e. UIδX , UIδY , and SIδ .

Definition 2 (∼-PID5 [4], [17]). The unique information about
M present in X and not in Y is given by

ŨI(M : X \ Y ) := min
Q∈∆P

IQ(M ;X |Y ), (6)

where ∆P := {QMXY : QMX = PMX , QMY = PMY } and
IQ(· | ·) is the conditional mutual information over the joint
distribution QMXY .

As with the δ-PID, equations (1)–(3) fully determine the
remaining components of the ∼-PID.

C. Blackwell sufficiency and Blackwellian PIDs

Blackwell sufficiency provides a partial order between
random variables based on how informative they are about
a message M . This notion was used by [4] to provide an
operational motivation for the ∼-PID, and also underlies the
basis of the δ-PID [3].

Definition 3 (Blackwell sufficiency: <M ). We say that a
channel PX|M is Blackwell sufficient w.r.t. another channel
PY |M (denoted X <M Y ) if ∃ PY ′|X ∈ C(Y |X) such that

PY ′|X ◦ PX|M = PY |M . (7)

Intuitively, X <M Y means that we can generate a new
random variable Y ′ from X (using the stochastic transformation
PY ′|X ) so that the effective channel from M to Y ′ is equivalent
to the original channel from M to Y .6 It was shown by
Blackwell [18] that if X is Blackwell sufficient for M w.r.t.
Y , then it is always preferable to observe X rather than Y ,
for making decisions about M . This operational interpretation
of Blackwell sufficiency was extended to PIDs by [4]:

Definition 4 (Blackwellian PID). A bivariate PID on PMXY

is said to be Blackwellian if

UIX = 0 ⇔ Y <M X and UIY = 0 ⇔ X <M Y

3Deficiency was introduced by Le Cam to quantify a departure from
Blackwell sufficiency.

4The reason for this notation is that the deficiency of Y w.r.t. X translates
to the unique information present in X and not in Y .

5Also called the BROJA-PID in the literature after the authors of [4].
6Blackwell sufficiency is identical to the concept of stochastic degradedness

of broadcast channels [16].
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This means that (for a Blackwellian PID definition) the
unique information in one variable is zero only if it is always
beneficial to observe the other variable to make decisions about
M . Conversely, if X is not Blackwell sufficient for M w.r.t.
Y , then Y must have some unique information about M that
X cannot access.

However, it is important to note that a Blackwellian PID is
only operationally motivated to the extent of whether or not
the unique information is zero. It does not lend an operational
interpretation as to the volume of unique information when it
is non-zero.

III. INTERPRETING THE δ- AND ∼-PIDS

A. Deficiency upper bounds the difference in risk

The δ-PID derives its operational interpretation directly from
that of deficiency [13], [19], upon which it is based. The
deficiency of Y w.r.t. X , originally defined by Le Cam [19],
measures how far from Blackwell sufficient Y is, w.r.t. X .

Le Cam’s original notion of deficiency was defined using the
total variation distance, and as a worst case over realizations of
M . That was a frequentist context, where M was a statistical
parameter and not a random variable. Following Raginsky [20],
the Le Cam deficiency of Y w.r.t. X about M is:

δLeCam(M : X \ Y )

:= inf
PX′|Y
∈C(X|Y )

sup
m∈M

∥∥PX′|Y ◦ PY |M=m − PX|M=m

∥∥
TV

(8)

The Le Cam deficiency can be interpreted as upper bounding
the difference in risk (for any bounded loss function) when
using X rather than Y to make decisions based on M . We
can state this formally, using the setup of a decision problem:

Definition 5 (Decision problem). Suppose we need to perform
actions based on the value of M , which we cannot observe
directly (e.g., we may want to estimate the value of M ). We have
access to either X ∼ PX|M or Y ∼ PY |M , which can give
us information about M . The actions we take after observing
either X or Y—call these M̂X(x) and M̂Y (y) respectively—
incur a bounded loss that depends on the chosen action and the
value of M . Let L(M̂(·),M) (‖L‖∞ ≤ 1) be the loss function,
where M̂(·) may be either M̂X(x) or M̂Y (y), depending on
whether we choose to observe X or Y . How do we decide
whether to choose X or Y when we do not know L?

Blackwell [18] showed that if X <M Y , we can always
attain a lower expected loss by choosing X . What happens
when Blackwell sufficiency does not hold? Define the risk as
the expected loss over either X or Y :

Rm(PX|M , M̂X ,L) := EX∼PX|M=m

[
L(M̂X(X),m)

]
(9)

If Blackwell sufficiency does not hold, then the worst-case risk
(over M ) when you choose X is at most that when you choose

Y , plus the Le Cam deficiency of X [13], [14]. In other words,
for any m and for any M̂Y , there exists an M̂X such that7

Rm(PX|M , M̂X ,L) ≤ Rm(PY |M , M̂Y ,L)

+ δLeCam(M : Y \X).
(10)

Raginsky [20] showed how alternative measures like the
KL-divergence may be used in place of the total variation
distance in (8), while preserving the aforementioned risk-based
operational interpretation. In that work, Raginsky preserved the
frequentist setting, taking the worst case divergence between
PX′|Y ◦ PY |M=m and PX|M=m, over all realizations of M .
However, for PIDs, M is a random variable and thus it makes
more sense to consider the expected divergence over different
values of M . This is what Banerjee et al. [3] did, in proposing
the weighted output deficiency stated in Definition 1. They also
showed that the decision-theoretic operational interpretation
extends to the new deficiency definition δ(M : X \ Y ) [3,
Prop. 8]. We restate this theorem here, and provide a proof in
Appendix A [1] for completeness.

Theorem 1 (Prop. 8 in [3]). Let the average risk be given by

R̄(PX|M , M̂X ,L) := EM,X

[
L(M̂X(X),M)

]
(11)

Then, for any M̂Y , there exists an M̂X such that

R̄(PX|M , M̂X ,L) ≤ R̄(PY |M , M̂Y ,L)

+ g(δ(M : Y \X)),
(12)

where g(·) is a monotonically increasing function.

B. UIδ and ŨI upper bound the difference in risk

Despite the existence of a clear operational interpretation for
deficiency as defined in Definition 1, the δ-PID, which arises
out of deficiency, still needs an interpretation. In particular,
we need to address what happens after we symmetrize the
redundancy in Equation (5).8

Corollary 2. UIδ may be used in place of δ in Theorem 1.

Proof. The unique information upper bounds the deficiency:

UIδ(M : Y \X)

= I(M ;Y )−RIδ(M : X;Y ) (13)
= max{δ(M : Y \X),

δ(M : X \ Y ) + I(M ;Y )− I(M ;X)} (14)
≥ δ(M : Y \X). (15)

The rest follows from the fact that g(·) is a monotonically
increasing function.

Thus, the decision-theoretic operational interpretation also
applies to the unique information of the δ-PID, although the
bound that it implies may be somewhat loose.

7Recall that the deficiency in X is denoted δ(M : Y \ X), because it
corresponds to the unique information in Y .

8This symmetrization step is required because I(M ;X)− δ(M : X \ Y )
is not always symmetric in X and Y . Interestingly, this issue does not arise in
the case of the ∼-PID, which has an intrinsically symmetric redundancy [4].

3



Fig. 1: A depiction of the cyan region problem described in Section III-C
for the δ-PID. The two bars represent the quantity of mutual information M
has with X and Y respectively; the green and yellow portions represent how
much of that information is the deficiency; and the red portion represents the
symmetrized redundancy. The cyan region is part of the unique information
in X , but cannot be accounted for by deficiency.

The unique information of the ∼-PID, ŨIY , also acts as an
upper bound for the difference in risk when choosing X rather
than Y in the decision problem from Definition 5.

Corollary 3. ŨI may be used in place of δ in Theorem 1.9

Proof. This follows directly from a result of Bertschinger
et al. [4], which states that ŨI upper bounds the unique
information of any other PID definition that satisfies what
they call “Assumption (∗)”. According to this assumption,
a definition of unique information should depend only on
PM , PX|M and PY |M , and not on the whole joint distribution
PMXY . Since the δ-PID satisfies Assumption (∗), we have that
ŨIY ≥ UIδY , which, along with Corollary 2, completes the
proof. However, the upper bound may once again be loose.

C. An unbridged gap in the decision-theoretic interpretation

For both UIδ and ŨI , the decision-theoretic operational
interpretation does not yield a tight bound. In fact, one of two
unique informations, UIX or UIY , is guaranteed to be loose
in this way. Taking the case of UIδ , which has the tighter of
the two bounds, we can quantify the extent of slack as follows:
suppose that I(M ;X) − δ(M : X \ Y ) > I(M ;Y ) − δ(M :
Y \X). Then, RIδ(M : X;Y ) = I(M ;Y )− δ(M : Y \X),
and thus

UIδ(M : Y \X) = δ(M : Y \X) (16)

UIδ(M : X \ Y ) = δ(M : Y \X) + I(M ;X)− I(M ;Y ).

In other words, the excess quantity added to UIδ(M : X \Y ),
over and above the deficiency is

Cyan(M : X \ Y ) := I(M ;X)− δ(M : X \ Y )

− I(M ;Y ) + δ(M : Y \X).
(17)

For lack of a better name, we call this the “cyan region”, due
to how it is depicted in Figure 1. It is completely unclear
what the interpretation of Cyan(M : X \ Y ) ought to be, and
why this information should be considered unique to X (see
Figure 1).

Essentially, we pay the cost of a loose bound in UI(M :
X\Y ), and the extent of slack does not have a clear justification
in and of itself. This is a gap in our decision-theoretic
understanding the interpretation of unique information, which
we leave to future work to fill.

9Corollaries 2 and 3 are implicit in [3]; we make these explicit here to
emphasize the usefulness of this interpretation.

D. A connection between the ∼-PID and the δ-PID

We now present a previously unidentified connection between
these two PIDs, and use this connection to develop an intuitive,
albeit informal, interpretation for both PIDs.

First, observe that the δ-PID can be thought of as optimizing
PX′|MY instead of PX′|Y , so long as we include the constraint
that M—Y—X ′ forms a Markov chain. This constraint can
also be written as I(M ;X ′ |Y ) = 0. Thus, abbreviating
PX′|Y ◦ PY |M as PX′|M , we can rewrite the deficiency from
Equation (4) as:

δ(M : X \ Y ) = inf
PX′|MY

EM
[
DKL(PX|M ‖PX′|M )

]
s.t. I(M ;X ′ |Y ) = 0.

(18)

Next, we show that the definition of ∼-PID can also be
rewritten into a similar form. The optimization variable Q in
Definition 2 obeys the constraints that QMX = PMX and
QMY = PMY . Suppose we change notation by introducing a
new random variable X ′ using the stochastic transformation
PX′|MY , but which also obeys PX′M = PXM—or equiva-
lently, PX′|M = PX|M . Then, the distribution PMX′Y plays
exactly the same role as QMXY , and obeys precisely the same
constraints. Thus, the ∼-PID definition can also be written as:

ŨI(M : X \ Y ) = inf
PX′|MY

I(M ;X ′ |Y )

s.t. EM
[
DKL(PX|M ‖PX′|M )

]
= 0,

(19)

where the constraint PX′|M = PX|M has been expressed in
terms of zero expected KL-divergence between the channels.

Equations (18) and (19) reveal the remarkable similarity
between the δ- and ∼-PIDs. The two PIDs are essentially
optimizing over the same quantities, but in effect, interchange
objective and constraint.

E. Clarifying the connection to Blackwell sufficiency, and a
new informal interpretation

Using the newfound connection between the δ- and ∼-PIDs,
we can clarify their connection to Blackwell sufficiency, and
provide an informal interpretation.

First, Blackwell sufficiency can be re-understood as follows.
Y <M X if two requirements are met: (i) there must exist
a random variable X ′ that is derived from Y through the
stochastic transformation PX′|Y , i.e., M—Y—X ′ must be a
Markov chain; and (ii) X ′ must act as a “copy” of X w.r.t. M ,
in the sense that PX′|M = PX|M .10

When Y /<M X , the δ-PID and the ∼-PID quantify depar-
tures from Blackwell sufficiency in two different ways (also
see Figure 2): (i) the δ-PID enforces the Markov chain and
measures how far we are from a copy (refer Eq. 18); (ii) the
∼-PID enforces the copy and measures how far we are from
having a Markov chain (refer Eq. 19). This unified explanation
of the δ- and ∼-PIDs has not been identified in the literature
previously, to our knowledge.

We can also use this picture to offer a new informal
interpretation. If Alice and Bob opt for X and Y respectively

10This is equivalent to the “simulatable” notion presented in [3, Defn. 38].
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Fig. 2: A depiction of the informal interpretations of the δ- and ∼-PIDs,
as described in Section III-E. (Left) The δ-PID enforces the Markov chain
M—Y —X′, and measures how far X′ is from a copy of X , i.e., it measures
the divergence between PX|M and PX′|M . (Right) The ∼-PID breaks the
Markov chain by allowing bits of M to leak to X′ outside of Y , however, it
enforces that X′ is a copy of X . ŨIX measures the minimum number of
bits X′ needs to borrow from M along the dashed line, so that PX′|M is a
copy of PX|M .

in the decision problem of Definition 5, the deficiency δX
measures the closest that Bob can come to emulating Alice
(on average, for the worst loss L for Bob). On the other hand,
ŨIX measures the minimum number of bits Bob needs to
borrow from M in order to emulate Alice perfectly (Figure 2).

Remark. Banerjee et al. [3] also present another variant
of deficiency, which they call the weighted input deficiency.
They show that it induces a PID just as in Definition 1, and
that this PID is identical to another early and well-known
PID proposed by Harder et al. [21]. Despite the similarity
between the two deficiency notions, however, the PID based
on input deficiency is not Blackwellian [3, Ex. 28(b)]. Thus,
the connection presented here cannot be extended to the PID
based on input deficiency.

F. A novel generalization of the δ- and ∼-PIDs

The connection identified above also allows us to generalize
both definitions using a single Lagrangian form:

δλ(M : X \ Y ) := inf
PX′|MY

EM
[
DKL(PX|M ‖PX′|M )

]
+ λ I(M ;X ′ |Y ).

(20)

As λ → ∞ in the Equation (20), we get the δ-PID, and as
λ→ 0, we get the ∼-PID. This new δλ-PID has to be written in
terms of a deficiency and then symmetrized as in Definition 1,
since its redundancy will not be symmetric in general.

IV. CAPTURING THE UNIQUE INFORMATION

In Section III, we discussed operational interpretations for
the quantity of unique information in two closely related PID
definitions. However, both of these definitions are statistical
rather than structural, i.e., they do not tell us what the unique
information is. This could be relevant in a number of settings,
such as for fairness in Machine Learning, as motivated in our
previous work [15].

In this section, we propose a new PID definition that is able
to capture the unique information in the form of a random
variable. The quantity of unique information also has a simple
operational interpretation in terms of mutual information.

Definition 6 (I-PID). Let the information deficiency of Y with
respect to X about M be given by

δI(M : X \ Y ) := sup
PT |M ∈C(T|M)

I(T ;X)− I(T ;Y ). (21)

Here, T is a random variable produced through the stochastic
transformation PT |M , and satisfies the Markov chain T—M—
(X,Y ). Then, the redundant information may be defined as

RII(M : X;Y ) = min
{
I(M ;X)− δI(M : X \ Y ),

I(M ;Y )− δI(M : Y \X)
}
.

(22)

This definition is appealing, since it captures the basic
intuition that if X has unique information about M with respect
to Y , that means that X has information about some “part” of
M which Y does not have access to. In practice, this could
mean that X is able to access entire “dimensions” of M that
Y cannot, or it could mean that X has access to some of
the same dimensions of M as Y , but with lower noise, or it
could be a combination of these factors. In this definition, the
stochastic transformation PT |M plays the role of extracting
these “parts” of M , which X has access to, but Y does not.
The random variable T corresponding to the optimal PT |M
tells us the “parts” (or subspaces) of M in which X has unique
information w.r.t. Y .

The operational interpretation for the unique information of
the I-PID is simply this: UIIX is the maximum information
about M which you can extract from X , which you cannot
simultaneously get from Y . That is, for any (possibly stochastic)
function f that depends only on M , we will always have

I
(
f(M);X

)
≤ I
(
f(M);Y

)
+ UII(M : X \ Y ). (23)

However, this definition also suffers from the cyan region
problem described in Section III-C. This is one area where we
still need to work on understanding its interpretation.

In what follows, we prove some basic properties about the
I-PID, and show that it is Blackwellian for Gaussian PMXY .

Theorem 4 (Non-negativity and bounds on the I-PID). The
I-PID atoms can be shown to be non-negative:

UII(M : X \ Y ) ≥ 0 RII(M : X;Y ) ≥ 0

UII(M : Y \X) ≥ 0 SII(M : X;Y ) ≥ 0

The I-PID also satisfies the natural bounds:

UII(M : X \ Y ), RII(M : X;Y ) ≤ I(M ;X),

UII(M : X \ Y ), SII(M : X;Y ) ≤ I(M ;X |Y ).

Theorem 5 (The I-PID is Blackwellian for Gaussian PMXY ).
If PMXY is jointly Gaussian, then the I-PID unique informa-
tion satisfies:

UII(M : X \ Y ) = 0 ⇔ Y <M X. (24)

Proofs of these theorems are presented in Appendix B [1].
In particular, Theorem 5 implies that prior results we have
shown for Gaussian distributions [16] are also applicable to the
I-PID. We conjecture that Theorem 5 can be generalized, i.e.,
the I-PID is Blackwellian in general, but leave an investigation
of this to future work.

Also highly relevant are properties such as continuity and
additivity [22]. As such, these are beyond the scope of the
current paper, and we leave their examination to future work.
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APPENDIX A
PROOF OF THEOREM 1

Proof. Consider the difference in average risks:

R̄(PX|M , M̂X ,L)− R̄(PY |M , M̂Y ,L) (25)

= EM
[
EX|M

[
L(M̂X(X),M)

]
− EY |M

[
L(M̂Y (Y ),M)

]]
= EM

[∫
PX|M · L(M̂X(X),M) dx

−
∫
PY ′|M ◦ PX|M · L(M̂Y (Y ),M) dy

+

∫
PY ′|M ◦ PX|M · L(M̂Y (Y ),M) dy

−
∫
PY |M · L(M̂Y (Y ),M) dy

]
(26)

Now, the last two terms of this expression can be bounded
using the bound on L and the total variation distance:

EM
[∫

PY ′|M ◦ PX|M · L(M̂Y (Y ),M) dy

−
∫
PY |M · L(M̂Y (Y ),M) dy

]
(27)

= EM
∫ (

PY ′|M ◦ PX|M − PY |M
)
· L(M̂Y (Y ),M) dy

(a)

≤ ‖L‖∞ · EM
∥∥PY ′|M ◦ PX|M − PY |M

∥∥
TV

(28)
(b)

≤ ‖L‖∞ ·
1√
2
EM

√
DKL

(
PY |M

∥∥PY ′|M ◦ PX|M
)

(29)

(c)

≤ ‖L‖∞ ·
√

1

2
EM DKL

(
PY |M

∥∥PY ′|M ◦ PX|M
)

(30)

(d)
= ‖L‖∞ · g

(
δ(M : Y \X)

)
, (31)

where in (a) we have used the bound on L and the definition
of the total variation norm, in (b) we have used Pinsker’s
inequality [23, Lemma 2.5], in (c) we have used Jensen’s
inequality [24, Thm. 2.6.2], and in (d), we have set g(z) :=√
z/2.
It only remains to be shown that the first two terms of the

expression in Equation (26) can be upper bounded by zero.
Examining the first two terms, for any M̂Y (y), we can derive
a stochastic action rule, M̂X(x) that will attain the same risk:
we can first draw ỹ ∼ PY ′|X and then select the action M̂Y (ỹ).
Thus,

EM
[∫

PX|M · L(M̂X(X),M) dx (32)

−
∫
PY ′|M ◦ PX|M · L(M̂Y (Y ),M) dy

]
≤ 0,

which completes the proof.
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APPENDIX B
PROOFS OF THEOREMS 4 AND 5

Proof of Theorem 4. First, observe that

δI(M : X \ Y ) := sup
T

I(T ;X)− I(T ;Y ) (33)

≥ I(0;X)− I(0;Y ) = 0. (34)

Furthermore,

I(T ;X)− I(T ;Y ) ≤ I(T ;X) ≤ I(M ;X), (35)

where the last inequality follows by the data processing
inequality and the Markov chain T—M—(X,Y ). Thus,

δI(M : X \ Y ) ≤ I(M ;X) (36)

0 ≤ I(M ;X)− δI(M : X \ Y ) ≤ I(M ;X) (37)

0 ≤ I(M ;Y )− δI(M : Y \X) ≤ I(M ;Y ) (38)

This implies

0 ≤ RII(M : X;Y ) ≤ min
{
I(M ;X), I(M ;Y )

}
(39)

0 ≤ UII(M : X \ Y ) ≤ I(M ;X) (40)

0 ≤ UII(M : Y \X) ≤ I(M ;Y ) (41)

Furthermore,

I(T ;X)− I(T ;Y ) = I(T ; (X,Y ))− I(T ;Y |X) (42)
− I(T ; (X,Y )) + I(T ;X |Y )

= I(T ;X |Y )− I(T ;Y |X) (43)
≤ I(T ;X |Y ) ≤ I(M ;X |Y ), (44)

where in the very last inequality follows from the fact that
T ⊥⊥ (X,Y ) |M and the data processing inequality [24, Ch. 2].
This may not be obvious, but it follows the same proof as the
data processing inequality:

I
(
T,M ;X |Y

)
= I
(
T ;X |Y

)
+ I
(
M ;X |Y, T

)
(45)

= I
(
M ;X |Y

)
+ I
(
T ;X |Y,M

)
(46)

From this it follows that

I
(
T ;X |Y

)
+ I
(
M ;X |Y, T

) (a)
= I

(
M ;X |Y

)
(47)

I
(
T ;X |Y

) (b)

≤ I
(
M ;X |Y

)
, (48)

where (a) follows from the fact that I
(
T ;X |Y,M

)
= 0 since

T ⊥⊥ (X,Y ) |M , while (b) uses I
(
M ;X |Y, T

)
≥ 0. This

justifies Equation (44), which implies

δI(M : X \ Y ) ≤ I(M ;X |Y ) (49)

δI(M : Y \X) ≤ I(M ;Y |X) (50)

If UII(M : X \Y ) = δI(M : X \Y ), then SII(M : X;Y ) =
I(M ;X |Y ) − δI(M : X \ Y ) ≥ 0, and SI ≤ I(M ;X |Y ).
This shows that all terms in the I-PID are non-negative and
bounded.

Proof of Theorem 5. We need to show that when PMXY is
jointly Gaussian,

UIIX = 0 ⇔ Y <M X. (51)

(⇐) Observe that the I-PID satisfies Assumption (∗) from
Bertschinger et al. [4], i.e., UIX is a function only of PM ,
PX|M and PY |M . Thus, by [4, Lemma 3], UIIX ≤ ŨIX .
Since the ∼-PID is Blackwellian, Y <M X ⇔ ŨIX = 0⇒
UIIX = 0.

This part of the proof holds irrespective of the distribution
of PMXY .

(⇒) Now, suppose PMXY is Gaussian. Then it suffices to
show that whenever Y /<M X , ∃ PT |M such that I(T ;X)−
I(T ;Y ) > 0, to ensure that UIIX > 0.

Following the notation of [16], let ΣMXY be represent
the joint covariance matrix (which fully specifies information
measures on the joint distribution), let ΣX|M represent the
conditional covariance matrix of X given M and let ΣX,Y
represent the cross-covariance of X and Y . Let ΛX :=
ΣT
X,MΣ−1

X|MΣX,M and ΛY := ΣT
Y,MΣ−1

Y |MΣY,M . Then, [16,
Theorem 2], states

Y <M X ⇔ ΛY < ΛX , (52)

where for positive semidefinite matrices A and B, A < B
denotes that A−B is positive semidefinite.

Consider PT |M to be a normal distribution, given by
N (HTM,ΣT |M ). Further, we can assume without loss of
generality that ΣM = I . Then, ΣT,X = HTΣMΣM,X =
HTΣT

X,M . The mutual information between T and X is given
by:

I(T ;X)

=
1

2
log det(I + Σ−1

T HTΣT
X,MΣ−1

X|MΣX,MH
T
T ) (53)

=
1

2
log det(I + Σ

−1/2
T HTΣT

X,MΣ−1
X|MΣX,MH

T
TΣ
−1/2
T )

(54)

=
1

2
log det(I + Σ

−1/2
T HTΛXH

T
TΣ
−1/2
T ) (55)

Then,

δ(M : X \ Y ) =
1

2
log det(I + Σ

− 1
2

T HTΛXH
T
TΣ
− 1

2

T ) (56)

− 1

2
log det(I + Σ

− 1
2

T HTΛYH
T
TΣ
− 1

2

T )

If Y /<M X , then ΛY </ ΛX , i.e., ∃ c ∈ R s.t.

cTΛXc > cTΛY c. (57)

Letting ΣT = I and HT = c, we have that

1 + cTΛXc > 1 + cTΛY c (58)

det(1 + cTΛXc) > det(1 + cTΛY c) (59)
1

2
log det(1 + cTΛXc) >

1

2
log det(1 + cTΛY c) (60)

This implies
1

2
log det(1 + cTΛXc)−

1

2
log det(1 + cTΛY c) > 0 (61)

⇒ δ(M : X \ Y ) > 0 (62)

Recognizing that UIδ(M : X \ Y ) ≥ δ(M : X \ Y ) (see
Equation (15)), this completes the proof.
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