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Abstract—Recently, we developed a systematic framework for
defining and inferring flows of information about a specific
message in neural circuits [2], [3]. We defined a computational
model of a neural circuit consisting of computational nodes and
transmissions being sent between these nodes over time. We
then gave a formal definition of information flow pertaining
to a specific message, which was capable of identifying paths
along which information flowed in such a system. However, this
definition also had some non-intuitive properties, such as the
existence of “orphans”—nodes from which information flowed
out, even though no information flowed in. In part, these non-
intuitive properties arose because we restricted our attention
to measures that were functions of transmissions at a single
time instant, and measures that were observational rather than
counterfactual. In this paper, we consider alternative definitions,
including one that is a function of transmissions at multiple
time instants, one that is counterfactual, and a new observational
definition. We show that a definition of information flow based on
counterfactual causal influence (CCI) guarantees the existence of
information paths while also having no orphans. We also prove
that no observational definition of information flow that satisfies
the information path property can match CCI in every instance.
Furthermore, each of the definitions we examine (including CCI)
is shown to have examples in which the information flow can take
a non-intuitive path. Nevertheless, we believe our framework
remains more amenable to drawing clear interpretations than
classical tools used in neuroscience, such as Granger Causality.

The full version of this paper is available online [1].

I. INTRODUCTION

There is a need to understand how information flows in
various kinds of computational systems: particularly in fields
such as neuroscience, where we wish to understand the inner
workings of the brain [4]–[7], and in AI, where we wish
to analyze, prune, or assess the trustworthiness of artificial
neural networks [8]–[12]. Towards this, we recently proposed
a computational model for such neural circuits, and defined
a notion of information flow called M -information flow,
pertaining to a specific message M in such a system [2], [3].
The primary goal of our previous work was to demonstrate that
the intuitive mutual-information–based definition of flow does
not satisfy very simple properties: information can “disappear”
from the system and reappear at a later time instant, so
we cannot always “track” how a message flows through the
system. This necessitates a more involved definition, which
uses conditioning in a particular way, to track the “information
paths” along which the message flows.

However, M -information flow also has a certain counterin-
tuitive feature: it allows for the existence of “orphans”—nodes
from which M -information flows out, though none flows in.

This was partly because we chose to restrict ourselves to
observational measures that are functions of transmissions
at a single time instant. We did not examine counterfactual
measures (which come from the field of causality [13]–[15]
and cannot, in general, be estimated from passively observed
data) and we only superficially examined how a definition
based on multiple time instants can be employed.

The core contribution of the current work is an exploration
of three alternative definitions of information flow. (i) A
version of M -information flow with pruning, which is a
function of transmissions at multiple time instants, and is a
more detailed analysis of the same definition proposed in our
previous work [2] (Section III); (ii) A counterfactual definition
that closely matches our intuition in many cases, but cannot be
estimated using passively observed data (Section IV); (iii) A
modified M -information flow definition based on conditional
mutual information, where we allow for functions to be applied
to transmissions prior to conditioning—as stated, this is not
computable in general, but might be more appealing in some
settings (Section VI). We also prove an impossibility result:
no observational measure of information flow that guarantees
information paths can match counterfactual causal influence
exactly; it will, in some instances, award information flow to
edges that counterfactual causal influence will not (Section V).

We note that all three proposed definitions allow us to track
information paths while also not having orphans (possibly after
pruning). However, each definition we examine has its own
shortcomings, giving rise to non-intuitive paths in at least some
cases. Recognizing and understanding these shortcomings can
help us determine which definition is better suited for a
particular purpose. Despite no definition being ideal, this
systematic framework lends itself much better to drawing clear
interpretations than classical tools used in neuroscience, such
as Granger Causality. We revisit this point in Section VII.

II. BACKGROUND

We begin with a short recap of our computational system
model and the definition of information flow about a message
M discussed in [2]. We also restate two important properties
of our M -information flow definition: firstly, that it guarantees
the existence of “information paths” along which information
about the message flows in the system; and secondly, that
it suffers from “orphans”. The definitions as well as the
counterexample in this section are largely replicated from our
previous work [2] with only minor modifications, in order to
keep this paper self-contained.
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A. The Computational System Model

Definition 1 (Time-unrolled graph): Let G∗ = (V∗, E∗)
be a fully-connected directed graph with N nodes, i.e.,
V∗ = {1, 2, . . . , N} and E∗ = V∗ × V∗. Also, let T =
{0, 1, . . . , T} be a set of time indices, where T is a positive
integer representing the maximum time index. Then, a time-
unrolled graph G = (V, E) is constructed by indexing a
fully-connected directed graph G∗ using the time indices T as
follows: (i) The nodes V consist of all nodes V∗ in G∗, sub-
scripted by time indices T, i.e., V= {At : A ∈ V∗, t ∈ T};
(ii) The edges E connect nodes of successive times in V,
so they can be written in terms of the edges in E∗ as
E= {(At, Bt+1) : (A,B) ∈ E∗, t ∈ T}.

Remarks: (i) We denote the set of all nodes at time t
by Vt, and the set of all (outgoing) edges at time t by Et.
So, for example, we will have A1 ∈ V1 and (A1, B2) ∈ E1.
(ii) The original fully-connected graph G∗ has self-edges, so
the time-unrolled graph will always have an edge (At, At+1)
in Et for every node At ∈ Vt.

Definition 2 (Computational System): A computational sys-
tem C = (G, X,W, f) is a time-unrolled graph G that has
transmissions on its edges which are constrained by computa-
tions at its nodes. The input nodes of the computational system
compute a function of a message, M . We now elaborate upon
these italicized terms:
2a) Transmissions on Edges

In a time-unrolled graph G, let X : E→ X be a function
that describes what random variable is being transmitted on a
given edge, i.e., X(E) is the random variable corresponding
to the transmission on the edge E. Here, the range X is the
set of all random variables in some probability space.

For convenience, we define X applied to a set of edges as
the set of random variables produced by applying X to each
of those edges individually, i.e., for any subset E′ ⊆ E,

X(E′) = {X(E) : E ∈ E′}. (1)

We extend the use of this notation to other functions of nodes
and edges that we define, going forward.
2b) Computation at a Node

Let At ∈ Vt be a node in the time-unrolled graph G,
at some time t ≥ 1 (recall that t ∈ {0, 1, . . . , T}). Let
P(At) be the set of edges entering At, and Q(At) be the
set of edges leaving At. Further, let us suppose that At is
able to intrinsically generate the random variable W (At) at
time t, where W (At) ⊥⊥ W (V\{At}) ∀ At ∈ V and
W (Vt) ⊥⊥ {M} ∪ {X(Et′) : t′ ∈ T, t′ < t}.1 Then, the
computation performed by the node At (for t ≥ 1) is a
deterministic function fAt that satisfies

fAt

(
X(P(At)),W (At)

)
= X(Q(At)). (2)

Here, X(Et−1), W (V \ {At}), W (Vt), X(P(At)) and
X(Q(At)) all make use of the notation described in (1). Note

1Strictly speaking, we require that M is not an ancestor of any W (Vt) in
the structural causal model underlying the computational system, i.e., inter-
ventions on M will not affect W (Vt), even in a counterfactual setting [14].

that the function at a node can thereby be time-varying. Also,
the definition above does not apply when t = 0; this is a
special case which is discussed below.
2c) The Message and the Input Nodes

The message is a random variable M , which is of interest
to the observer, and for which we shall define information
flow. We assume that the message enters the computational
system at (and only at) time t = 0. We formally define the
input nodes of the system as those nodes of G, at time t = 0,
whose transmissions statistically depend on the message M :
Vip := {A0 ∈ V0 : I

(
M ;X(Q(A0))

)
> 0}, where Q(A0)

represents the set of edges leaving the node A0.
As with Definition 2b, we define the computation performed

by an input node A0 ∈ Vip as a function fA0 that satisfies
fA0

(
M,W (A0)

)
= X(Q(A0)), and the computation per-

formed by a non-input node at time t = 0, A0 ∈ V0\Vip, as a
function fA0

that satisfies fA0

(
W (A0)

)
= X(Q(A0)), where

W (A0) ⊥⊥W (V\{A0}) ∀ A0 ∈ V0 and W (V0) ⊥⊥M .

B. Defining Information Flow

Definition 3 (M -information Flow): We say that an edge
Et ∈ Et has M -information flow if

∃ E′t ⊆ Et \ {Et} s.t. I
(
M ;X(Et) |X(E′t)

)
> 0. (3)

Analogously, a collection of edges at the same time instant,
Rt ⊆ Et, is said to have M -information flow if

∃ E′t ⊆ Et \Rt s.t. I
(
M ;X(Rt) |X(E′t)

)
> 0. (4)

That is, we say an edge Et (at time t) has M -information
flow if, conditioned on the transmissions of some subset E′t
also at time t, X(Et) has mutual information with M (here,
E′t includes the empty set). The rationale behind this definition
is explained after Counterexample 1.

Note: Henceforth, “information flow about M” may refer to
any measure of information flow, but “M -information flow”
refers specifically to Definition 3.

C. The Information Path Property

Definition 4 (Path): In any computational system C,
suppose A and B are two disjoint sets of nodes in
V. Then, a path from A to B is any ordered set of
nodes {V (0), V (1), . . . , V (L)} that satisfies (i) V (0) ∈ A;
(ii) V (L) ∈ B; and (iii) (V (i−1), V (i)) ∈ E for every
1 ≤ i ≤ L, where L is a positive integer indicating the length
of the path. We refer to the set {(V (i−1), V (i))}Li=1 as the
edges of the path.

Definition 5 (M -Information Path): An M -information path
from A to B is a path from A to B, every edge of which
carries information flow about M .

Property 1 (Existence of an Information Path): In any
computational system C, suppose that at some time top ∈ T,
there is an “output node” Vop ∈ V whose outgoing edges
Q(Vop) satisfy I

(
M ;X(Q(Vop))

)
> 0. Then, there must exist

an M -information path from the input nodes Vip to Vop.
Theorem 1: Definition 3 satisfies Property 1.
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M A0 A1 A2

B0 B1 B2

C0 C1 C2

M

M

Z

Z

Z

M⊕Z

Fig. 1: The computational system for Counterexample 1, which also appeared
in our previous work [2] (to avoid clutter, only edges relevant to the counterex-
ample are depicted; all other edges are still present and their transmissions are
assumed to be zero). Edges in blue have M -information flow (Definition 3)
and those in orange are M -CCI’d (as described later in Section IV). Observe
that the edges with M ⊕ Z as well as Z at time t = 1 have M -information
flow as per Definition 3. This results in an orphan at C1, since the only
incoming edge of C1 does not have M -information flow.

The proof of this theorem was one of the main contributions of
our earlier work, and can be found in [2]. We have reiterated
the theorem statement alone for completeness.

D. The No-Orphans Property

As pointed out in our earlier work [2], Definition 3 also has
a very non-intuitive property: the existence of orphans.

Definition 6 (M -information Orphan): In a computational
system C, a node Vt is said to be an M -information orphan
if its outgoing edges Q(Vt) have information flow about M ,
but its incoming edges P(Vt) do not.

Property 2 (Absence of Orphans): M -information orphans
must not exist in a computational system.
M -information flow (Definition 3) does not satisfy Prop-

erty 2. This is illustrated by the following counterexample.
Counterexample 1: Consider the computational system de-

picted in Figure 1 (note that, in order to avoid unnecessary
clutter, only edges with non-zero transmissions are shown in
the figure). A0 is the input node, which has the message
M ∼ Ber(1/2) at time t = 0. The system is designed to com-
municate M to the node B. It chooses the following strategy:
at t = 0, A0 transmits M to A1. C0 independently generates a
different random number, W (C0) = Z ∼ Ber(1/2), Z ⊥⊥ M ,
and sends this message to A1, as well as C1. A1 then computes
M ⊕ Z and passes the result to B2, while C1 sends Z to
B2. Here, the symbol “⊕” stands for XOR, the exclusive-OR
operator on two bits. B2 is thus able to recover M by once
again XOR-ing its inputs, (M ⊕ Z) and Z.

The edges shown in blue carry M -information flow: the
edges transmitting M naturally carry M -information flow;
even though M ⊕ Z and Z do not statistically depend on
the message, they conditionally depend on the message given
the other (recall Definition 3). That is, I(M ;M ⊕Z |Z) > 0,
and complementarily, I(M ;Z |M ⊕Z) > 0. Hence, they also
carry M -information flow.

Observe that the node C1 is an M -information orphan, since
the edge (C1, B2), transmitting Z, has M -information flow,
but none of C1’s incoming edges have M -information flow.

Remark: Counterexample 1 essentially shows why Defini-
tion 3 is needed: a simpler definition that awards information

M A0 A1 A2 A3

B0 B1 B2 B3 M

M

M

Z

Z

M⊕Z

[M,Z]

M⊕Z

Z

Fig. 2: The computational system corresponding to Counterexample 2, which
demonstrates that pruning does not always remove edges with Z. Edges in
blue have M -information flow per Definition 3 and those in orange are M -
CCI’d (as described later in Section IV). Counterintuitively, in this example,
the edge with M ⊕ Z does not carry M -information flow per Definition 3.

flow to Et if I(M ;X(Et)) > 0 would fail to identify the
information path, because M ⊕ Z ⊥⊥ M . The edge carrying
M ⊕ Z thus plays the important role of maintaining the M -
information path from A0 to B2 in this example.

The existence of M -information flow on (C1, B2) (and
hence the existence of M -information orphans) might seem
rather counterintuitive in a way that M -information flow on
M ⊕ Z does not. We likely feel this way because Z was
never computed from M . In this sense, Z lacks some kind of
“functional dependence” on M , which M ⊕Z does not. This
point is examined in greater detail from a causality perspective
in Section IV. In the following section, we consider a simple
pruning-based mechanism and determine whether this removes
orphans and edges that transmit only Z.

III. M -INFORMATION FLOW WITH PRUNING

One way to avoid orphans might be to consider transmis-
sions at more than one time instant when defining information
flow: for instance, we could check for information flow at
a previous time instant before assigning flow to a particular
edge. The principled way to do this is to traverse paths
backward from the output node to the input node, while
systematically pruning all “stray” paths that lead to orphans.
This process is described in the form of an Information Path
Algorithm in [2, Section 5]. The algorithm relies on the fact
that Definition 3 satisfies the information path property, so that
a path leading backwards from the output node to the input
nodes is always guaranteed to exist.

However, while this pruning mechanism removes orphans,
it does not always remove edges like Z, which do not
“functionally depend” on the message M . We next present a
counterexample where an edge with M⊕Z is removed, instead
of the edge with Z. It should be noted that this is a highly
counterintuitive example, and is very unlikely to occur as such
in practice. Nevertheless it shows that even with pruning, M -
information flow is not completely devoid of shortcomings.

Counterexample 2 (Pruning does not remove Z-edges):
Consider the computational system shown in Figure 2. Here,
the message M is being communicated from A0 to B3 in the
following manner: A0 sends M to both A1 and B1, while B0

generates Z ∼ Ber(1/2), Z ⊥⊥M , and sends it to A1 and B1.
The node A1 then computes M ⊕ Z and passes it on to B3

through A2, while B1 simply concatenates M and Z into a
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vector [M,Z] and sends it to B2. B2 then discards M , and
passes on Z to B3.

The result of this setup is that the edges shown in blue
have M -information flow. In particular, the edge (A1, A2)
carrying M ⊕ Z, does not carry M -information flow: this is
because M ⊕ Z does not depend on M by itself, and when
conditioned on [M,Z], naturally, M is treated as a constant
and thus any mutual information with M goes to zero, i.e.,
I(M ;M ⊕ Z |M,Z) = 0. Thus, the only information path
from the input node, A0, to the output node, B3, is the one
that includes the edge (B2, B3), whose transmission is Z. In
other words, if we were to prune edges that did not lead back
to the input node A0, we would end up removing (A2, B3),
while (B2, B3), which carries Z, would remain intact.

The existence of such a counterexample makes the informa-
tion path theorem proved in [2] all the more interesting and
surprising. However, it also raises several questions: on the
one hand, the existence of orphans seemed counterintuitive,
because their outgoing transmissions seemed to “have nothing
to do with the message M”; while on the other, Counterex-
ample 2 shows that even the removal of orphans does not
guarantee the removal of edges with such transmissions. This
makes it all the more important to focus on such edges: how
are we able to intuitively distinguish between transmissions
that in some crude sense “functionally depend” on the message
M (such as M⊕Z), and those that do not (e.g. Z)? We argue
that the answer to this question lies in the realm of causality,
in a concept known as counterfactual causal influence.

IV. COUNTERFACTUAL CAUSAL INFLUENCE

Counterfactual causal influence [8]–[16] intuitively asks the
question: for a particular realization of all random variables
in the system, if M alone had been different, how would
the value of some other variable have changed? This turns
out to be the key to formally understanding the intuitive
notion of “functional dependence” discussed above. In this
section, we show that a definition of information flow based on
counterfactual causal influence satisfies the information path
property while at the same time having no orphans.

Definition 7 (M -counterfactual causal influence): The trans-
mission on some edge Et can be written in terms of M and
all past intrinsic random variables, Wt := ∪τ≤tW (Vτ ) as

X(Et) = g(M,Wt), (5)

for some function g. Then, X(Et) (or equivalently, Et) is said
to be counterfactually causally influenced by M (M -CCI’d)
if for some potential realization wt of Wt,

∃ m,m′ s.t. g(m,wt) 6= g(m′,wt). (6)

M -CCI constitutes a definition of information flow in that it
can be treated as an indicator of information flow about M on
the edge Et. The definition of M -CCI may also be applied in
the same way to variables other than transmissions on edges.

Theorem 2: M -CCI (Definition 7) satisfies Property 2,
i.e., it does not give rise to M -information orphans. In other
words, if at any node Vt, there exists an outgoing edge

Et ∈ Q(Vt) that is M -CCI’d, then there exists some incoming
edge, E′t−1 ∈ P(Vt), which is also M -CCI’d.

Theorem 3: M -CCI (Definition 7) satisfies Property 1,
i.e., it guarantees the existence of M -information paths. That
is, if there is some “output node” Vop ∈ V that satisfies
I
(
M ;X(Q(Vop))

)
> 0, then there exists a path from Vip to

Vop such that every edge of this path is M -CCI’d.
We defer the proofs to Appendix A, which appears in the

full version of this document [1]. A brief combined proof
outline for both theorems is provided below.
Proof outline for Theorems 2 and 3:
1) Link M -CCI for a single edge with that for a set of edges:

if no edge in a set is individually M -CCI’d, then the set
of all edges is not M -CCI’d. The converse is also true.

2) Show using Definition 2b that if the set of all incoming
edges is not M -CCI’d, then the set of all outgoing edges
is not M -CCI’d. Thus, no individual outgoing edge is M -
CCI’d (by the converse in the previous point). With this,
the contrapositive of Theorem 2 is proved.

3) Prove that if an edge is not M -CCI’d, then its transmission
can have no mutual information with M .

4) Then, work backwards from the output node in Theorem 3
by recursively using Theorem 2 to show that an information
path to the input nodes exists. This proves Theorem 3.

As shown by the orange edges in Figs. 1 and 2, M -CCI
captures the intuitively correct edges in these examples, e.g.,
M ⊕ Z is considered to have information flow based on M -
CCI, while Z is not. This raises the question of how close
we can get to M -CCI with purely observational measures,
which we address in the very next section. However, we
should also note here that M -CCI is not without caveats: it
is not observational (i.e., cannot be estimated from passively
observed data) and it can produce information paths that could
be considered spurious (as we will show in Example 3).

V. THE LIMITATIONS OF OBSERVATIONAL MEASURES

In this section, we prove an impossibility result which shows
that no observational measure that satisfies the information
path property can be made to assign information flow only to
edges that are M -CCI’d. First, we formally define what we
mean by observational measures.

Definition 8 (Observational measures of information flow):
A definition of information flow is said to be observational
if it depends only on samples of X(E) and M . In effect, the
measure depends only on the joint distribution p(X(E),M),
which we assume can be estimated from multi-trial data.
In contrast, interventional and counterfactual measures require
knowledge outside of the joint distribution p(X(E),M): we
must also know how the joint distribution changes when one or
more variables are intervened upon, or held fixed to a constant
value. We next state the impossibility result, deferring its proof
to Appendix B, which can be found in the full version [1].

Theorem 4: Any observational definition of information flow
on the edge Et that satisfies the information path property
(Property 1) will, in some instances, assign information flow
to edges that are not M -CCI’d (Definition 7).
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M

A1

B0 B1 B2

C1

M

M ⊕ Z2 M ⊕ Z2

Z1 Z1

[M,Z1] [M,Z1]

Fig. 3: The computational system from Example 3, showing the differences
between Definitions 3, 7 and 9. Edges in blue, orange and green respectively
have information flow as per Definitions 3, 7 and 9.

VI. ONE MORE DEFINITION AND AN EXAMPLE

Theorem 4 shows that observational measures are limited in
that either they will not satisfy the information path property,
or there will be instances where they award information flow
to edges that are not M -CCI’d. However, we can ask if there
are observational measures that satisfy the information path
property, while at the same time providing more intuitive
results upon pruning—e.g., measures that do not suffer from
the counterintuitive problem discussed in Counterexample 2.
In that spirit, we provide one more observational definition of
information flow and show how it overcomes the problem dis-
cussed in Counterexample 2. Finally, we provide an example
that brings out the differences between the three definitions
presented here, and discuss their pros and cons.

Definition 9 (Modified M -information flow): We say that an
edge Et has modified M -information flow if there exists some
subset of edges E′t ⊆ Et \ {Et}, E′t = {E

(i)
t }ki=1 and some

set of functions {hi}ki=1 such that

I
(
M ;X(Et)

∣∣h1(X(E
(1)
t )), . . . , hk(X(E

(k)
t ))

)
> 0. (7)

In other words, an edge Et has modified M -information flow,
if there exist some other edges at time t, such that when con-
ditioned on some functions of their individual transmissions,
X(Et) has mutual information with M .

Every edge that has M -information flow (Definition 3)
also has modified M -information flow, since Definition 9
immediately reduces to Definition 3 if we restrict all hi
to be identity functions. However, the opposite is not true.
Consider Fig. 2 for example: here, all blue edges, as well as
the edge (A1, A2), will have modified M -information flow.
This is because there exists a function of [M,Z] (namely,
h([M,Z]) := Z), such that when M ⊕ Z is conditioned
on h([M,Z]), we get non-zero mutual information with M .
Thus, we may be avoiding some of the more non-intuitive
corner cases in which M -information flow does not supply
the “intuitively correct” information path.

Modified M -information flow also suffers from many of the
same drawbacks as M -information flow: it still has orphans
(e.g., in Fig. 1, only blue edges have modified M -information
flow, so C1 will be an orphan). Furthermore, as stated,
Definition 9 is not computable, as the range of the hi can
be arbitrarily large in dimension.

Example 3 (All definitions are imperfect): We use one last
example to show that M -CCI and modified M -information
flow are also not perfect, and to bring out their differences.
Consider the computational system shown in Fig. 3. We
take M,Z1, Z2 ∼ i.i.d. Ber(1/2). Note that M ⊕ Z2 is M -
CCI’d; however, since Z2 no longer persists in the system,
all information about M has been destroyed through the XOR
with Z2. In other words, M -CCI identifies an information path
which can have no computational value whatsoever.

On the other hand, the edges with Z1 have modified M -
information flow, because [M,Z1] admits the function M⊕Z1.
But since Z1 does not interact with M (save possibly within
the node B2), it could be argued that these edges should not
carry information flow about M either.

Example 3 also shows that there can be M -CCI’d edges that
do not have (either original [2] or modified) M -information
flow; edges not M -CCI’d but that have modified (and possibly
original) M -information flow; and edges that have all three.

VII. DISCUSSION AND CONCLUSION

Choosing the right definition for a particular quantity is of-
ten a hard task, and might be problem- and context-dependent,
as evidenced by the multitude of definitions for entropy [17],
[18]. The choice of definition is also often dictated by the
trade-offs that we are willing to live with. In the case of
information flow, if we are in a setting where we can examine
counterfactual effects (e.g., when simulating an artificial neural
network), then M -CCI provides an intuitive definition, with
the caveat that it may also identify some irrelevant edges. On
the other hand, if we can only make observational measure-
ments, then M -information flow with pruning goes a long way,
save for some corner cases (such as Counterexample 2). We
hope that these holes are also plugged when using modified
M -information flow, especially in conjunction with a pruning
algorithm that can remove orphans. Further work is needed
to understand if there are other instances where modified M -
information flow succeeds or fails in some important way.

Ultimately, it should be noted that this systematic frame-
work for information flow, while not providing a single answer,
still overcomes many of the fundamental challenges faced by
classical techniques used for examining information flow. In
the neuroscientific literature, Granger causality [5], [19]–[21]
has long been used as a heuristic measure of information flow,
despite several criticisms [22]–[29], including the well-known
fact that it is not truly representative of causation [13]. Indeed,
interpreting Granger causal influence as information flow may
also be questionable, as we have shown in past work [2],
[29]. Given the systematic approach we have taken in defining
information flow here, a natural question that arises is what
connection our definition has to true causation. Our results
imply that an edge has information flow about M per any of
our three definitions, if some intervention on M can change
the marginal distribution of a transmission. Similarly, edges
whose transmissions statistically depend (unconditionally) on
the message have information flow according to all three
definitions, meaning that they are also M -CCI’d.
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APPENDIX A
PROOFS FROM SECTION IV

A. Proof of Theorem 2

We first prove a simple lemma, which connects M -CCI for
a single edge and for a set of edges.

Lemma 5: For any set E′t ⊆ Et, if there exists some edge
Et ∈ E′t which is M -CCI’d, then X(E′t) is also M -CCI’d.
The converse is also true.

Proof: We start by enumerating the edges in E′t. Suppose
|E′t| =: k. Then, we can write E′t = {E

(i)
t }ki=1. Now, we note

that the set X(E′t) is simply the collection of all transmissions
in E′t. Therefore, we can write

X(E′t) =
{
X(E

(i)
t ) : E

(i)
t ∈ E′t

}
(8)

=
{
g
X(E

(i)
t )

(M,Wt) : E
(i)
t ∈ E′t

}
(9)

=: h(M,Wt), (10)

where g
X(E

(i)
t )

is as defined in Definition 7 and h is a function
that can be written in terms of the {g

X(E
(i)
t )
}. Now, if any one

E
(j)
t ∈ E′t is M -CCI’d, then there will be some set of values

m, m′ and wt such that g
X(E

(j)
t )

(m,wt) 6= g
X(E

(j)
t )

(m′,wt).
Thus, h(m,wt) 6= h(m′,wt), and hence E′t is M -CCI’d.

Conversely, if no edge Et ∈ E′t is M -CCI’d, we would
have g

X(E
(i)
t )

(m,wt) = g
X(E

(i)
t )

(m′,wt) ∀ m,m′,wt. Hence,
it follows that h(m,wt) = h(m′,wt) ∀ m,m′,wt. Thus X(E′t)
is not M -CCI’d. This proves the lemma.

Remark: Lemma 5 might seem trivial, at least in the case
of M -CCI, but it is actually a crucial step in the proof of
the information path property. In particular, the equivalent
of Lemma 5 does not hold for mutual information in the
converse, i.e., it is not true that if X(E′t) has non-zero mutual
information with M , then some edge Et ∈ E′t also has non-
zero mutual information with M . Two edges’ transmissions
may individually have no mutual information about M , while
jointly having non-zero mutual information about M . The
failure of this lemma is the reason that a definition of in-
formation flow based on mutual information (as mentioned
in Counterexample 1) does not satisfy the information path
property.

Proof of Theorem 2: For there to be no orphans, the
following must hold: at any node Vt, if there exists an outgoing
edge Et ∈ Q(Vt) that is M -CCI’d, then there exists some
incoming edge, E′t−1 ∈ P(Vt), which is also M -CCI’d.

First, note that if all incoming edges of Vt are not M -
CCI’d, i.e. Et−1 is not M -CCI’d ∀ Et−1 ∈ P(Vt), then the
set of incoming edges P(Vt) is not M -CCI’d. This is a direct
consequence of the converse of Lemma 5.

Next, recall from Definition 2b that X(Q(Vt)) =
fVt

(
X(P(Vt)),W (Vt)

)
. We have already shown that P(Vt)

is not M -CCI’d, and since M is not an ancestor of W (Vt)
in the structural causal model (SCM) corresponding to the
computational system (see footnote 1), W (Vt) is also not M -
CCI’d. Thus, Q(Vt) is not M -CCI’d. Therefore, by Lemma 5,
no individual outgoing edge, Et ∈ Q(Vt), can be M -CCI’d.

Hence, by the contrapositive of the above statements, if
there is, in fact, some outgoing edge of Vt, Et ∈ Q(Vt),
that is M -CCI’d, then there must also be an incoming edge,
E′t−1 ∈ P(Vt), that is M -CCI’d.

B. Proof of Theorem 3

Again, we first prove a simple lemma which links M -CCI
with mutual information.

Lemma 6: If some variable Y := h(M,W) is not M -CCI’d
(where W does not have M as an ancestor in the SCM corre-
sponding to the computational system), then I(M ;Y ) = 0.

Proof: Since Y is not M -CCI’d, we have that

h(m,w) = h(m′,w) ∀ m,m′,w, (11)

where w takes values in the set of possible realizations of the
random variable W. Thus, h is effectively independent of M ,
and we can write

Y = h(M,W) =: h0(W). (12)

Assuming all distributions are discrete, we can use summations
to write:

pY,M (y,m) =
∑

w

pY,M,W(y,m,w) (13)

=
∑

w

pY |M,W(y |m,w)pM,W(m,w) (14)

=
∑

w

δ
(
y, h(m,w)

)
pM,W(m,w) (15)

=
∑

w

δ
(
y, h0(w)

)
pM (m)pW(w) (16)

= pM (m)
∑

w

δ
(
y, h0(w)

)
pW(w) (17)

=: pM (m)c(y) (18)

where in the above, δ is the Kronecker Delta function, which
takes a value of 1 when its arguments are equal, and zero
otherwise. In (15) we have made use of the fact that Y is a
deterministic function of M and W to write pY |M,W as a δ-
function, and in (16), we relied on the fact that M ⊥⊥ W. Thus,
we have shown that pY,M can be factorized into functions
purely in y and m. This implies that Y ⊥⊥ M , and hence
I(M ;Y ) = 0.

Proof of Theorem 3: Recall the theorem statement:
if there is some “output node” Vop ∈ V that satisfies
I
(
M ;X(Q(Vop))

)
> 0, then there exists a path from Vip to

Vop such that every edge of this path is M -CCI’d.
So, let us start by assuming that there is some Vop such

that I
(
M ;X(Q(Vop))

)
> 0. Then, by the contrapositive of

Lemma 6, we must have that Q(Vop) is M -CCI’d. We can then
repeatedly use Theorem 2 to find edges leading backwards in
time to the input nodes. Applying Theorem 2 at time t = top,
we find there must be some edge Et−1 ∈ P(Vop) which is M -
CCI’d. Following this edge backwards, suppose it originated
from some node Vt−1 ∈ Vt−1. Once again, we can apply
Theorem 2 at Vt−1 to find another edge at time t−2 which is
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M

A1

B0 B2

C1

M

X1 = M ⊕ Z X3 = M ⊕ Z

X2 = Z X4 = Z

Fig. 4: The computational system used in the proof of Theorem 4. Only
the edges on the upper path with M ⊕ Z are M -CCI’d, however, the joint
distribution is symmetric with respect to Z and M ⊕ Z. As a result, any
observational measure that gives information flow to M ⊕ Z must also give
information flow to Z.

M -CCI’d. In this manner, we can find a path leading all the
way back to time t = 0, to some node V0. Finally, we must
argue that V0 ∈ Vip based on the fact that one of its outgoing
edges, say E0, is M -CCI’d.

At time t = 0, Definition 2c implies that the outgoing
edges of each node in Vip have mutual information with
M , i.e., X(Q(U0)) depends on M for every U0 ∈ Vip. By
the contrapositive of Lemma 6, this implies that for every
U0 ∈ Vip, Q(U0) is M -CCI’d. Then, by Lemma 5, we know
that there must exist some particular edge in each Q(U0)
which is also M -CCI’d. So we have shown that each node
in Vip has at least one outgoing edge which is M -CCI’d.
But we also need to show that these are the only edges that
are M -CCI’d, and that we cannot trace an information path
all the way back to some V ′0 ∈ V0 \ Vip. To show this, we
once again make use of Definition 2c, which states that for
each U ′0 ∈ V0 \ Vip, X(Q(U ′0)) = fU ′

0
(W (U0)). Thus, each

X(Q(U ′0)) is a deterministic function of W (U ′0), which in
turn is not M -CCI’d. Thus, Q(U ′0) cannot be M -CCI’d, and
hence no individual edge E′0 ∈ Q(U ′0) can be M -CCI’d for
any U ′0 ∈ V0 \ Vip. This proves that the information path we
have traced backwards from Vop must lead to Vip.

Thus, there exists a path from Vip to Vop, such that every
edge of this path is M -CCI’d.

APPENDIX B
PROOFS FROM SECTION V

Proof of Theorem 4: Consider the computational system
given in Fig. 4. Similar to the computational system in
Counterexample 1, the node B0 is trying to communicate M
to B2. However, this time, it generates Z itself, and sends
X1 = M ⊕ Z to A1, while sending X2 = Z to C1. A1

and C1 act merely as relay nodes, passing on M ⊕ Z and Z
(which we label as X3 and X4 respectively) to B2. Finally,
B2 computes M by XOR-ing its inputs.

The theorem statement asks us to consider any observational
measure of information flow which satisfies the information
path property. In the context of Fig. 4, the only possible infor-
mation paths are (B0, A1, B2) and (B0, C1, B2). Therefore,
any measure that satisfies the information path property will
award information flow to at least one of the pairs (X1, X3)
or (X2, X4).

Any observational definition of information flow would have
to be a function of X1, X2, X3, X4 and M only (refer Def-
inition 8). For convenience, denote X := [X1, X2, X3, X4] =
[M⊕Z, Z, M⊕Z, Z]. Consider the joint distribution
pM, X(m, x):

pM, X(m, x) (19)

=
∑

z∈{0,1}

p(m, x, z) (20)

(a)
=

∑
z∈{0,1}

pM (m)pZ(z)pX |M,Z(x |m, z) (21)

(b)
=

1

4

∑
z∈{0,1}

pX |M,Z(x |m, z) (22)

(c)
=

1

4

∑
z∈{0,1}

δ(x1,m⊕ z)δ(x2, z)δ(x3,m⊕ z)δ(x4, z), (23)

=
1

4

[
δ(x1,m⊕ 0)δ(x2, 0)δ(x3,m⊕ 0)δ(x4, 0)

+ δ(x1,m⊕ 1)δ(x2, 1)δ(x3,m⊕ 1)δ(x4, 1)
]
, (24)

where in (a), we made use of the fact that M ⊥⊥ Z; in
(b), we relied on the fact that M and Z are both Ber(1/2)
random variables; and in (c), δ represents the Kronecker Delta
function, and we have used the fact that X is a deterministic
function of M and Z. Note that when m = 0,

pM, X(0, x) =
1

4

[
δ(x1, 0)δ(x2, 0)δ(x3, 0)δ(x4, 0)

+ δ(x1, 1)δ(x2, 1)δ(x3, 1)δ(x4, 1)
]
, (25)

and when m = 1,

pM, X(1, x) =
1

4

[
δ(x1, 1)δ(x2, 0)δ(x3, 1)δ(x4, 0)

+ δ(x1, 0)δ(x2, 1)δ(x3, 0)δ(x4, 1)
]
. (26)

In both cases, observe that pM, X is symmetric in X in a
very specific way: the ordered pair (x1, x3) may be swapped
with the pair (x2, x4) to no effect (i.e., M ⊕ Z and Z are
statistically symmetric with respect to M ). In the limit of large
samples, any observational measure will be some functional
of pM, X. Thus, if X1 and X3 are awarded information flow,
so too must X2 and X4, by basic symmetry. This means
that if the information path property holds, then all edges in
Fig. 4 will have information flow about M according to any
observational definition. Thus, Fig. 4 describes an instance
where any observational measure that satisfies the information
path property awards information flow to edges that are not
M -CCI’d.
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