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Abstract—We develop a theoretical framework for defining
information flow in neural circuits, within the context of ‘“event-
related” experimental paradigms in neuroscience. Here, a neural
circuit is modeled as a directed graph, with “clocked” nodes
that send transmissions to each other along the edges of the
graph at discrete points in time. We are interested in a defi-
nition that captures the flow of ‘“‘stimulus”-related information,
and which guarantees a continuous information path between
appropriately defined inputs and outputs in the directed graph.
Prior measures, including those based on Granger Causality
and Directed Information, fail to provide clear assumptions and
guarantees about when they correctly reflect stimulus-related
information flow, due to the absence of a theoretical foundation
with a mathematical definition. We take a methodical approach—
iterating through candidate definitions and counterexamples—
to arrive at a definition for information flow that is based on
conditional mutual information, and which satisfies desirable
properties, including the existence of information paths.

I. INTRODUCTION

Neuroscientists often seek an understanding of how in-
formation flows in the brain while it performs a particular
task [3]-[6]. As a concrete example, consider [3], where,
crudely speaking, the authors are trying to discern whether
information about images of common hand-held tools passes
from visual cortex to motor cortex and then to the area
responsible for object recognition, or to the object recognition
area first, and only then to motor cortex. Distinguishing
between these hypotheses involves understanding how infor-
mation about a tool’s identity flows in the brain. Experiments
such as this—termed “event-related paradigms” [7] due to
the stimulus, or “event”, that occurs at the beginning of
the task—are common in cognitive neuroscience, and form
the basis for our model of neural computation. We use this
model to develop a theoretical framework for understanding
information flow in such experiments. Our framework is also
general enough to analyze information flow in various kinds
of Artificial Neural Networks. Ultimately, we believe that such
a framework will help with understanding brain function, and
hence with diagnosing and treating brain diseases [8]-[11].

Prior work on statistically inferring flows of information in
the brain appears under the umbrella of “functional connec-
tivity mapping” [12], [13]. These efforts have largely relied
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on measures of statistical causal influence such as Granger
Causality [14], Massey’s Directed Information [15]-[17],
Transfer Entropy [18] and Partial Directed Coherence [19].
Despite widespread use, these measures have frequently been
a subject of debate and disagreement within the neuroscientific
community [20]-[26]. In part, these disagreements stem from
the widely-acknowledged fact that under non-ideal measure-
ment conditions (e.g. in the presence of hidden variables [27,
p- 54], asymmetric noise [28], or limited sampling [29]), esti-
mation of these quantities may be erroneous. While these non-
idealities may eventually be overcome through technological
improvements, we believe that more fundamental issues will
still remain. For instance, in previous work, we demonstrated
using a feedback communication network that even under ideal
measurement conditions, the direction inferred by comparing
Granger-causal influences can be opposite to the direction of
information flow [30]. Another fundamental issue is that these
measures do not directly capture the effect of the stimulus.
Instead, it is often left in the hands of the experimentalist to
find causal influences that are stimulus-dependent [4], [31].

Fundamental issues of this nature persist due to the absence
of a formal theory which links a model for information flow
with the signals that are actually recorded. The lack of a model
and a mathematical definition has led to conflation of defining
and estimating information flow. We believe that this field
requires a Shannon-like approach, for modeling the underlying
computational system and for defining information flow.

Based on prior art in the information theory literature [32],
[33], we propose a model of neural computation consisting of
nodes communicating to each other at discrete points in time
on a directed graph. At every time instant, each node receives
transmissions on its incoming edges and computes a function
of these transmissions to send out on its outgoing edges. This
model is sufficiently general to also encompass various kinds
of Artificial Neural Networks. We will be interested in the
flow of a particular random variable called the “message”
(defined in Section II). Then, we state an intuitive property
(Property 1), which we use to motivate a definition for infor-
mation flow through counterexamples (Section III). Finally, we
show that this definition satisfies several desirable properties,
including our main result: the existence of “information paths”
(Section IV). Proofs are deferred to the appendices in the
full version of this paper [1]. An extended journal-length
manuscript [2] builds on this paper and includes detailed
discussions as well as example circuits such as the Network
Coding Butterfly and the Fast Fourier Transform.
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II. THE COMPUTATIONAL SYSTEM

In this section, we define the computational system that is
used to model neural circuits throughout this paper. But first,
we start with the definition of a time-unrolled graph, upon
which the computational system model is based.

Definition 1 (Complete directed graph): A complete directed
graph €* = (V*,€*) is described by a set of nodes and the
set of all edges between those nodes (including self-edges). We
denote the set of nodes by their indices, ¥* = {1,2,..., N},
where N is a positive integer denoting the number of nodes
in the graph. The set of edges in the graph is the set of all
ordered pairs of nodes, €* = V* x V*.

Remarks: (i) Edges are directed, so the edge (A, B) € €*
describes an edge from node A fo node B. (ii) Nodes have
self-edges. For every A € ¥*, there is an edge (A, A)
in €*. (ili)) Moving forward, nodes shall be thought of as
performing computations and possessing local memories. We
shall interpret the transmission of a node to itself as the
variable it stores within its memory.'

Definition 2 (Time-unrolled graph): Let I = {0,1,...,T}
be a set of time indices, where 1" is a positive integer repre-
senting the maximum time index. Then, a time-unrolled graph
€ = (V,6) is constructed by indexing a complete directed
graph €* using the time indices I as follows: (i) The nodes
% consist of all nodes 7'* in €*, subscripted by time indices
T, ie,V ={A;: A€V* t €T} (ii) The edges € connect
nodes of successive times in 7/, so they can be written in terms
of the edges in €* as € = {(A¢, Bi11) : (A, B) € 8*,t € T }.

Remarks: (i) For brevity, we denote the set of all nodes at
time ¢ by 7;, and the set of all (outgoing) edges at time ¢ by €;.
So, for example, we will have A; € 7, and (A1, Bs) € 6.
(ii) Edges at time ¢ connect nodes at time ¢ to nodes at time
t+1. (iii) Since the original graph €* had self-edges, there will
always be an edge (A, Aty1) in €; for every node A; € ;.

Definition 3 (Computational System): A computational sys-
tem 6 = (6,X,W, f) is a time unrolled graph ¥ that has
transmissions on its edges which are constrained by computa-
tions at its nodes. The input nodes of the computational system
compute a function of a message, M. We now elaborate upon
these italicized terms:

3a) Transmissions on Edges

In a time-unrolled graph €, let X : € — X be a function
that describes what random variable is being transmitted on a
given edge, i.e., X(E) is the random variable corresponding
to the transmission on the edge E. Here, the range X is the
set of all random variables in some probability space.’

For convenience, we define X applied to a set of edges as
the set of random variables produced by applying X to each
of those edges individually, i.e., for any subset €’ C €,

X(€)={X(E):Ec¥€}. (1)

IGraphs that are not complete and nodes with no memory are simply special
cases of our model, where the respective edges’ transmissions are set to zero.

2We assume that the measures admit well-defined mutual- and conditional-
mutual-information between any sets of random variables [34, Sec. 2.6].

We extend the use of this notation to other functions of nodes
and edges that we define, going forward.

3b) Computation at a Node

Let A; € 7, be a node in the time-unrolled graph €, at
some time ¢ > 1 (recall that t € {0,1,...,T}). Let P(A;) be
the set of edges entering A;, and Q(A;) be the set of edges
leaving A;. Further, let us suppose that A; is able to intrinsi-
cally generate the random variable* W (A;) at time ¢, where
W(A) L WT\{AD Y A € T, W(Th) L {M, X (6_1)}
and the symbol “1” stands for independence between random
variables. Then, the computation performed by the node A,
(for t > 1) is a deterministic function* f4, that satisfies

Fa (X (2(Ar), W(A)) = X(Q(A)). 2

Here, X(é:—1), W(V \ {A:}), W(7;), X(P(A4:)) and
X (Q(A;)) all make use of the notation described in (1). Note
that the definition above does not apply when ¢ = 0; this is a
special case which is discussed below.

3c) The Message and the Input Nodes

The message is a random variable M, which is of interest
to the observer, and for which we shall define information
flow. We assume that the message enters the computational
system at (and only at) time ¢ = 0. We formally define the
input nodes of the system as those nodes of G, at time ¢t = 0,
whose transmissions statistically depend on the message M:
Vo = {Ao € T : I(M;X(Q(Ag))) > 0}, where Q(Ao)
represents the set of edges leaving the node Aj.

To remain consistent with Definition 3b, we define the
computation performed by an input node Ay € ¥, as a
function f4, that satisfies fa, (M, W (Ay)) = X(Q(Ap)), and
the computation performed by a non-input node at time ¢ = 0,
Ay € Vy\Wyp, as a function fy4, that satisfies fa, (W (Ag)) =
X(Q(Ap)). As before, W(Ag) L W(T\{Ao}) V Ao € T
and W () L M.

Remarks: (i) Informally, Definition 3 allows each node to
generate a randomized function of its incoming transmissions
for each of its outgoing transmissions. (ii) The randomization
at each node is explicitly captured by its intrinsic random
variable W(-), and is assumed to be independent across all
nodes of the system. (iii) Each node is allowed to send a
different transmission on each of its outgoing edges. (iv) The
condition imposed by Equation (2) introduces dependence
between the random variables in the set X (€). (v) We will
not be concerned with the precise form of the computation
being performed by every node. We will only make use of in-
formation-theoretic measures applied to the random variables
in the computational system.

III. DEFINING INFORMATION FLOW

Before one can speak of estimating information flow in a
network, it is important to first define what we seek to estimate.

3X(Ey) and W(A¢) may also be random vectors instead of random
variables, i.e., an edge may transmit a vector. The proofs remain unchanged.
4This kind of model is not new, and can be found in the causality literature
for instance, under the name “Structural Equation Models” [27, Sec. 1.4.1].
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Figure 1: The computational system for Counterexample 1 (only relevant
edges’ transmissions are shown; transmissions on faded edges are assumed
to be zero). Observe that no edge at time ¢ = 1 has information flow as per
Candidate Definition 1, yet the message reappears at time ¢ = 2.

N

Towards finding the paths taken by the message while being
processed in the computational system, we define information
flow about the message on a single edge.

A. An Intuitive Property

Towards assessing and choosing between competing candi-
date definitions for information flow, we state a straightforward
and intuitive property, which we would want any definition of
information flow to satisfy.

Suppose that, at a given point in time, there is no flow of
information about the message on any edge of a computational
system (including self-edges). Then, we expect that informa-
tion about the message has ceased to persist in the system, so
the information flow about the message must be zero on all
edges of the computational system, at all future points in time.

Property 1 (The Broken Telephone): Let 6 be a computa-
tional system, and let Fp; : € — {0,1} be an indicator of
the presence of information flow about M on an edge. That
is, Fpr(E) = 1, if information about M flows on the edge
E € € and F)/(E) = 0, otherwise. The Broken Telephone
Property states that if, at some time ¢t € I, we have Fy; (E;) =
0V E; € €, then oj]w(Et/) =0V E, €8 V t' e g7t/ > t.

B. Intuiting Information Flow through a Counterexample

A simple and intuitive definition for information flow might
stem from dependence.

Candidate Definition 1: We say that information about the
message M flows on an edge E if I(M;X(E)) > 0.

Counterexample 1: Consider the computational system de-
picted in Fig. 1. Ay is the input node, which receives the
message M ~ Ber(1/2) at time ¢ = 0. The system’s goal is to
communicate M to the node B (this is equivalent to computing
the identity function, and making the output available at B).
It uses the following strategy: (i) At t = 0, Ay “transmits”
M to A; (i.e., node A stores M in its memory). Cj indepen-
dently generates a random number, W(Cy) = Z ~ Ber(1/2),
Z 1. M, and sends this variable to Ay and Cy. (ii)) At ¢t =1,
Ay computes M @ Z and passes the result to Bs, while C;
sends Z to By. Here, the symbol “®” stands for XOR, the
exclusive-OR operator on two bits. (iii) By recovers M by
once again XOR-ing its inputs, M & Z and Z.

Note that the output of By depends on M, even
though none of its inputs individually depends on M.

That is, I(M;X((A1,B2))) = I(M;M & Z) = 0, and
I(M;X((C1,Bp))) = I(M;Z) = 0, so by Candidate
Definition 1, information about the message flows on no edge
at time ¢ = 1. However, information about the message does
flow out of node B at time ¢t = 2. This violates Property 1.
Thus, mere dependence on the message cannot be a valid
definition for flow of information on a single edge. [ ]

Communication strategies such as the one in Counter-
example 1 frequently arise in cryptography [35], to prevent
an eavesdropper from reading confidential information, and
in network coding [33], for achieving the communication
capacity of a network (e.g., the butterfly network [33, Fig. 7b]).
Furthermore, a complex computational network may have
smaller sub-networks with such topologies.

Central to the idea of Counterexample 1 is a concept known
as “synergy”’, which is well-studied in the literature on Partial
Information Decomposition (PID; see [36] for a recent review).
Even in neuroscience, the concept of synergy is recognized and
well-understood [37]-[39], and some experimental evidence
has appeared in the literature [40].

Counterexample 1 might appear to suggest that information
flow ought to be defined for a set of edges. Indeed, this can
be done in such a way as to be completely consistent with the
single-edge definition that appears shortly (see Appendix D).

Attempts to correct Candidate Definition 1 by adding con-
ditioning either on a single edge, or on all other edges’
transmissions fail. Counterexamples to these can be found in
the extended version of the paper [2]. Instead, as we shall see,
one must condition on a subset of edges.

C. Information Flow on a Single Edge

Counterexample 1 motivates a new definition for informa-
tion flow about a message on an edge. Given an edge E; upon
which we expect non-zero information flow, we observe: there
is at least one subset of edges €, C €;\{FE;} such that X (E})
is conditionally dependent on M, given X (%€;).

Definition 4 (M -information Flow on a Single Edge): We
say that information about the message M flows on an edge
E, cé if

3%, C&\{E} st I(M;X(E)|X(8)) >0 (3

Henceforth, we refer to “information flow about the message
M” as M-information flow, and use the phrase “the edge
E; has M-information flow” or “the edge E; carries M-
information flow” to mean that information about M flows
on E per this definition.

Definition 4 can also be stated using the concept of Syner-
gistic information [36]: E; has M -information flow if and only
if X (E,) depends on M, or X (E,) has synergistic information
about M, with respect to some subset X (€;). This equivalence
is demonstrated in the extended version of this paper [2].

IV. PROPERTIES OF INFORMATION FLOW

Having defined information flow about a message for an
edge, we demonstrate that Definition 4 satisfies several intu-
itively desirable properties, including Property 1.



A. The Broken Telephone Property

Theorem 1: M-information flow, as given by Definition 4,
satisfies Property 1.

A proof of this theorem appears in Appendix A in the full
version of this paper [1].

B. The Existence of Orphans

Definition 4 also has a very non-intuitive property: an edge
leading out of a node may have M-information flow, even
though no edge leading into that node has M -information flow.

Definition 5 (M -information Orphan): In a computational
system 6, a node V; is said to be an M -information orphan
if there exists some @); € Q(V}) that has M -information flow,
but no edge P; € P(V;) has M-information flow.

Property 2: M-information orphans may exist in a compu-
tational system.

A detailed proof is provided in Appendix B in the full
version of this paper [1]. Essentially, the node C; in Fig. 1 is
an M -information orphan, because its outgoing edge (C1, B2)
carries M-information flow, whereas none of its incoming
edges has M -information flow.

The existence of M-information orphans—as well as the
presence of M-information flow on (Cy, Bs) in Counter-
example 1—may not be expected, since Z was never computed
from M. But closer inspection reveals that, from the perspec-
tive of By, Z is statistically indistinguishable from M & Z,
and is therefore just as important for recovering M.

Information flow can thus be “created” at an M -information
orphan, and can also be “destroyed” at a node (e.g., by
omission), so M-information flow does not obey a law of
conservation at nodes. In this sense, it is not a typical kind of
“flow” defined on graphs (see, for example, [41, Sec. 26.1]),
and well-known results such as the Max-flow Min-cut Theo-
rem [41, Thm. 26.6] do not apply as-is.

It is worthwhile to note at this point that the existence of
M -information orphans such as C in Counterexample 1 does
not violate the Data Processing Inequality (DPI) [42, Ch. 2].

Property 3 (Local Markov Property): For any given subset
of nodes ¥, C ¥, the following Markov Chain holds: M—
X(P () —X(@Q(T))-

A proof of this property appears in Appendix C in the full
version [1]. Given that this property is a direct consequence
of Definition 3b, it may not be very surprising. However,
it is worth noting that the Local Markov Property holds
even at an M -information orphan: even if M -information
flow spontaneously emerges from a node, the Local Markov
Property at that node is preserved, so the DPI is not violated.

C. The Existence of Information Paths

We now come to our main result: if the outgoing transmis-
sions of any given node depend on the message, then we can
find a path leading to that node from one or more input nodes,
along which M -information flows. Before we demonstrate this
property, we formally define an “M-information path”.

Definition 6 (Path): In any computational system 6,
suppose A and 9B are two disjoint sets of nodes in

. Then, a path from o to 9B is any ordered set of
nodes {V© v VI that satisfies (i) V(O € o
) V& e B; and (i) (VD V®) € € for every
1 < i < L, where L is a positive integer indicating the length
of the path. We refer to the set {(VO~1 V@)L | as the
edges of the path.

Definition 7 (M -Information Path): Continuing from Defi-
nition 6, we define an M -information path from o to 9B as any
path from ¢ to 98, each of whose edges carries M -information
flow. That is, if (V01 V@) = E, € &, for some t; € T,
then for every 1 < ¢ < L,

3%, C6, st I(M;X(E,)|X(§,))>0. 4

Property 4 (Existence of an Information Path): In any
computational system €, suppose that at some time top, € J,
there is an “output node” Vo, € ¥ whose outgoing edges
Q(Vep) satisfy I(M; X(Q(Vop))) > 0. Then, there must exist
an M -information path from the input nodes 7, to V.

Theorem 2: Definition 4 satisfies Property 4.

A rigorous proof of this theorem is provided in Appendix D,
which appears in the full version of this paper [1]. Below, we
provide a brief outline.

Proof outline: The proof shows the contrapositive of the
theorem: if there exists no M-information path from 7, to
Vop, then there must be a cut separating 7%, and V,,, each
of whose edges has zero M-information flow (see Fig. 2 in
Appendix D [1]). The proof is non-trivial principally because
this cut may stretch across multiple time instants, whereas our
definition of M-information flow involves edges at a single
time instant. The proof, therefore, needs to rely on induction
to show that none of the transmissions on the V;,-side of the
cut can statistically depend on M. The induction itself starts
with the first nodes that come after the cut (temporally) and
systematically demonstrates, time-point by time-point, that all
nodes to the right of the cut have outgoing transmissions that
are independent of the message M. [ ]

D. On the Uniqueness of Our Definition of Information Flow

From the perspective of designing an axiomatic framework,
it is desirable to find a minimal set of properties that gives rise
to a unique definition of information flow. Note that Property 1
does not uniquely specify a definition: a definition that sets
all edges to have information flow (or no edges to have
information flow) would also be consistent with this property.

In this section, we provide a set of properties that uniquely
leads to our definition of information flow. However, we must
acknowledge that we arrived at these properties with the
benefit of hindsight. As such, they are mathematically very
similar to our definition, and a more abstract set of properties
that leads to a unique definition would be desirable.

Property 5: In a computational system 6, let F,; : € —
{0,1} be an indicator of the presence of information flow
about M on an edge (as in Property 1). We now state
three conditions Fj; must satisfy, which naturally lead to
Definition 4:

5a) Fy(Ey) =1if I(M; X (Ey)) >0



5b) Fy(Ey) =1if 36, CEN\{E:} sit.
I(M; X(8)) | X(Ey)) > I1(M;X(%)))

S¢) Fyp(Ey) =0 if I(M;X(Et) ’X(%{)) =0V € C%E.

In the language of the PID literature [36], Property Sa states
that if an edge has unique or redundant information about
M, then it must carry information flow, while Property 5b
states that if an edge has synergistic information about M
along with some other set of transmissions, then it must carry
information flow. Finally, Property Sc states that if all three
of these components are absent, then that edge carries no
information flow. This also explains how, if any one of these
three properties is absent, our definition is no longer unique.

Proposition 3 (Uniqueness): If Fp; is an indicator of
information flow that satisfies the conditions in Property 35,
then Fy,(F:) = 1 if and only if E; has M-information flow,
per Definition 4.

A proof of this proposition appears in Appendix E in the
full version of the paper [1].

V. DISCUSSION

Estimation of information flow can be achieved using tech-
niques for conditional independence testing that have been
established in the literature. Once edges that have information
flow have been identified, one can discover all information
paths using a version of the depth-first search algorithm. These
ideas, along with examples of information flow in simple
systems, and detailed discussions on neuroscientific issues and
on the limitations of tools based on statistical causal influence,
appear in the extended version of this paper [2].
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APPENDIX A
PROOF OF THEOREM 1

Before we prove this theorem, we prove a simpler lemma
which directly falls out of Definition 4 and the properties of
mutual information.

Lemma 4: No edge in 6; has M-information flow if and
only if X (%;) is independent of M. In other words,

I(M; X(E;) | X(8)) =0 VE; €%, % CE\{E} (5
if and only if

I(M;X(%:)) =0. (6)

Equivalently, X (;) depends on M if and only if at least one

edge in €; has non-zero M-information flow.
Proof: (=) Suppose that the condition in (5) holds. Let

8 = {Et(l),Et(2), . .7Et(N2)} be any ordering of the edges
in 6;. Then,
I(M; X (&) (N

@ (v x(EM)) + 103 X (EP) | X (BL))  ®)

+I(M; X(EY) | X(E), X(E)) + -
N2 i—1
— Z[(M;X(Et(i))’ U{X(Et(j))}) ©)

NZ i—1
® Z[(M;X(Et(”) ‘X(U{Et@)})) ©o, (0

i=1 j=1
where (a) follows from the chain-rule of mutual information
[42, Ch. 2], (b) is simply the application of Equation (1), and
(c) follows from the fact that each term in the summation is
zero, by (5). This proves the forward implication.

(<) Next, suppose I(M; X(%;)) = 0. Let E; be any edge
in ; and let €; be any subset of 6, \ {E:}. Also, let €, =
%t \ (%é U {Et}) Then,

0=1(M;X(&,))
= I(M; X (%)) +1(M; X(E,) | X(8)))
+I1(M; X(€)) | X(§]), X (Er))

(1)
12)

by the chain rule. Since (conditional) mutual information is
always non-negative [42, Ch. 2], all three terms on the right
hand side must be zero. So in particular,

I(M; X(E;) | X(%))) =0. (13)

Since F; and €; are arbitrary, this proves the converse. [ |

Proof of Theorem 1: We need to prove that M-
information flow, as given by Definition 4, satisfies Property 1.
Explicitly stated, we need to show that if every edge at some
time ¢ has zero M-information flow, then every edge at all
future times ¢’ > ¢ must also have zero M -information flow.
So suppose that, at time ¢, for every E; € €, we have

I(M; X (E) | X(€) =0 V& CE\{E} (14
By Lemma 4, this implies that
I(M;X(%t)) =0. (15)

Now, consider the first future time instant, t' = ¢ + 1. For
every node A;11 € V41, the definition of computation at a
node (Definition 3b) states that

X(Q(Ar41)) = fa, (X(P(A41)), W (A1),

where the reader may recall, (A;41) and Q(As41) are the
edges entering and leaving A;,; respectively. We can collect
the individual functions f4,,, across all nodes in ;1 into a
single joint function, fq, 41> 10 obtain

(16)

X(Ee1) = friyy (X (&), W (Tht1)). (17

Therefore,
= I(M; fo,,, (X (%), W(¥i11))) (19)

(a)
< I(M; X (), W(Tis1)) (20)
=1(M; X(8)) + I1(M; W (Tht1) | X (&) (21)
Yo xs)) Do, (22)

where (a) follows from the DPI, (b) follows from the fact that
W (V1) L {M, X (%)}, and (c) follows from (15). Once
again, by non-negativity of mutual information we must have
that I (M; X (%;41)) = 0. Applying Lemma 4 once again, we
find that for t/ = ¢+ 1,

1(M; X (Ey)

X(€) =0 VEy €%, %) CE\{E}

(23)
We have shown that (14) implies (23), hence, induction on ¢’
yields that (23) holds for all future times ¢’ > ¢, completing
the proof. [ ]

APPENDIX B
PROOF OF PROPERTY 2

Proof: Consider the computational system in Fig. 1 from
Counterexample 1. The node C is an M -information orphan,
since the edge (C4, Bs) carries M-information flow, whereas
none of its incoming edges carries M -information flow. To see
this, first consider the incoming edge (Cy, C1):

I(M; X((Co,Ch))) = I(M; Z) =0, (24)
I(M;X((Co, C1)) | X((Co, Ar))) = I(M; Z| Z) =0,
I(M; X ((Co,Ch)) | X((Ao, A1) = I(M; Z| M) =0,
I(M; X((Co,C1)) | X((Co, A1), X ((Ao, A1)))

= [(M;Z|Z,M) = 0.

Thus, (Cp,C1) has no M-information flow. Next, consider
(Cl,Bg)Z

I(M;X((C1,Bs)) | X((A1,B2))) =I(M; Z|M & Z) = 1.

(25
This implies that X ((C4y,Bg)) has M-information flow.
Hence, by Definition 5, since C; has no M -information flow
on its incoming edges, but has M-information flow on one of
its outgoing edges, C7 is an M-information orphan. [ ]



APPENDIX C
PROOF OF PROPERTY 3

Proof: Since X(Q(7})) = fa (X(P(7/)), W(T)) by
Definition 3b, the tuple (X(@(%’)),X(@(Wt’))) is also a
function of X (P (7)) and X (W (%7}’)). Hence, the following
Markov chain holds:

M—(X(P(T)), W () —(X(P (7)), X (Q(T}))).
By the DPI, this implies that
I(M; X(Q(7)), X (P())) (26)
< I(M; X(P (), W () 27)
1M X(@ W) + (vaft | X(@(T)) @8)
(b)I(MX ))) + I(W(F); M, X(P(F))) (29
I(W(7); X (P(7, )))
9 1(M; X(2 () +0—0, (30)

where in (a) and (b), we have used the chain rule of mutual
information in two different ways, and in (c) we have used
the fact that W(7}) L {M, X (P(7/))}. Therefore,

I(M; X(Q(7))) | X(2(T))) =0, 31)

which implies the Markov chain in Property 3. [ |

APPENDIX D
PROOF OF THEOREM 2

Before we proceed to the proof of Theorem 2, it is necessary
to define a few quantities.

The definition of M-information flow for a single edge
naturally generalizes to one for a set of edges, at a given time.

Definition 8 (M -information Flow on a Set of Edges): We
say that information about the message M flows on a set of
edges €, C &, if

IR, CE st [(M;X(8)| X (R,

)) > 0.

The definition of M -information flow on a set of edges is
nearly identical to its single-edge counterpart. Indeed, they are
closely related, as the following proposition shows.

Proposition 5: A set €, C €, has M-information flow if and
only if there exists an edge F; € €, that has M-information
flow.

Proof: (=) Suppose there exists some E; € €; that has
M -information flow. That is,

(32)

3¢/ C&\{E;} st I(M;X(E;)|X(g)>0. (33)
Then,
I(M;X(%&)| X(8))) (34)
= I(M; X (E;) | X(&}))
+I(M; X(8\{E}) | X (), X(E;)  (35)
(@ QN
> I(M; X(E;) | X(8)) > (36)

where (a) follows from the non-negativity of conditional
mutual information and (b) from (33). Taking R; = §; in
Definition 8, we see that set €, has M -information flow.
(«<=) Next, suppose that the set €] has M-information flow,
as per Definition 8. That is, there exists a set R; C 6; such
that
I(M;X(% | X (R

1) >0. (37

Also, let {Et(l), Et(z)7 . Et(K)} be any ordering of the nodes
in €] (where K = |%;|). Then by the chain rule of mutual
information,

0<I(M;X(€)|X (%)) (38)

X(Dl{Efj)})>. (39)

By the non-negativity of conditional mutual information, at
least one of the terms in the summation must be strictly
positive. Let the index of this term be k*. Hence there exists
E; = Et(k ) and € =R U {E(1 E } such that

I(M; X (E) | X (&) (40)

K
_ I<M;X(Et(k)) ‘ X(R!
k=1

> 0.

In other words, there exists an edge E, € €, that has M-
information flow. [ ]

Next, we formally define the counterpart of an M-
information path, namely, a zero—M -information cut.

Definition 9 (Cut): In any computational system 6, suppose
A and B are two disjoint sets of nodes in 7. Then, a cut
separating f and B is any pair of sets (75, ¥$"), such that
(1) /e |y ol/smk CV (ll) /s N o[/smk _ (Z) (lll) d C oysrc
and (iv) B C V™%, We refer to the set of edges going from
Y to VK ie. BN (VS x V), as the edges in the cut
set.>

Definition 10 (Zero—M -information Cut): Continuing from
Definition 9, we say that a cut (¥, V") is a zero—M-
information cut if every edge in its cut set has zero M-
information flow. That is, for every E; € € N (U x Wsink),

I(M; X(E,) | X () =0 V& CE\{E}. @D

Remark. In Definition 10, we require that (41) hold for
every edge E; in €N (W x V™). However, the edges in this
set may belong to several different time points, since the cut is
not restricted to any particular time (e.g., see Fig. 2). The time
t used in (41), therefore, is determined by the time of the edge
E;, and varies for each E; that we check in €N (¥ x Y/ $ink),

Proof outline:  We shall prove the contrapositive of
the theorem, i.e., we will show that if there exists no M-
information path from 7, to V,,, then the outgoing trans-
missions of V;, are independent of M. We first connect the
absence of any M -information path with the presence of a
zero—M -information cut. This is achieved in Lemma 6, which
we present before the proof of Theorem 2.

SNote that it is not necessary for us to assume that, individually, 75 and
Ysink are connected sets of nodes. For instance, there may be an isolated
subset of "™ surrounded only by nodes in %/*™. Our theorems and proofs
remain unaffected, even in such a scenario.



The proof itself proceeds by induction over time. We divide
the proof into two steps: initialization and continuation. Start-
ing with the first nodes that come after the cut (temporally) in
the initialization step, we systematically show that all nodes
to the right of the cut have outgoing transmissions that are
independent of the message M through induction. In this proof
outline, we show these steps intuitively using Fig. 2, where the
dashed black line denotes the cut.

Initialization. Here, node (' is the first node to the right of
the cut, and all of its incoming edges must come from across
the cut (depicted by lines in red). Because the cut is a zero—
M -information cut, none of its incoming transmissions have
M -information flow. Furthermore, the intrinsically generated
random variable W (C1) is independent of M. Using these two
facts along with the DPI, we can show that the transmissions
on C7’s outgoing edges, X (Q(C4)), are also independent of
M.

Continuation. At the second time instant to the right of the
cut, nodes By and C5 receive their incoming transmissions
from either C; (shown in orange) or from across the cut
(shown in blue). Once again, the transmissions coming from
across the cut can have no information flow, and we have
shown that the transmissions coming from C; are independent
of M. Also, W(Bz) and W (C3) are independent of M and
all incoming transmissions. This suffices to show that the
outgoing transmissions of By and C, X (Q(Bz) U Q(Cy)),
are independent of M. Applying this argument repeatedly over
time shows that the transmissions of all nodes to the right of
the cut are independent of M.

Therefore, if there is a node V;, whose outputs depend on
M, we can be assured that there exists no zero—M -information
cut separating 7%, from V,,. Therefore, by Lemma 6, there
exists an M -information path from %, to Vgp. O

A few nuances are omitted in this outline, such as how the
definition of %, plays a role precisely. These subtleties are
better elucidated in the full proof.

Before proceeding to the formal proof of Theorem 2, we
first state and prove the lemma we alluded to earlier, which
shows how the absence of an M-information path implies the
presence of a zero—M -information cut, and vice versa.

Lemma 6: Let A and 9B be two disjoint sets of nodes in the
computational system 6. There exists no M -information path
from o to 9B if and only if there is a zero—M -information cut
separating o and 9.

Proof: (=) Suppose there exists no M -information path
from of to 9. Consider the set of all nodes to which there
exists at least one M-information path from of. Let 75" be
the collection of all such nodes, along with the nodes in o,
ie.,

V¥ =dU{V; € ¥ : 3 an M-information path
from of to V;}. 42)
Let /sink — < \ Ve, so that sk consists of nodes to
which there is no M -information path from of. Then, we must

have 3B C ¥ since it is known that there are no M-
information paths from o to 9. Therefore, (¥, U sink) is

> cut
95150 —1

> g;lcut
gafink

Figure 2: A generic computational system used in the proof outline and to
explain certain steps in the proof of Theorem 2. For the purposes of the proof
outline, it suffices to note that the black dashed line denotes the cut. All
variable names can be ignored at this point of time.

For the purposes of the formal proof, note that in this figure, €°* is essentially
the union of the red, blue and purple edges, while €*"¥ is the union of the
orange and green edges. From this, it is evident that 9“’(%‘““) =9 U
9;‘21‘1 for any time ¢, i.e., the incoming edges of %/ *"k at time ¢ must either
come from nodes in "% or from nodes across the cut. Secondly, it should
be clear that P5K = Q(VSE) N €Sk, je., the incoming edges of Vi
that originate from nodes in %/ %™ are simply the outgoing edges of %SE“I‘
which terminate at nodes in %/*"™%. This is seen best at time ¢ = 1 in the
graph above, where the orange and grey lines together represent @(7/15‘“"),
the orange and green edges together make up €%, and Qﬁi"k is given by the
orange edges, which is the intersection of the two sets.

> g;é:ut

5 gbsink

a cut that separates of and 9B, such that no edge in the cut
set has M -information flow. In other words, by Definition 10,
this is a zero—M -information cut separating s and .

(<) Next, suppose that there is an M -information path
{V@}E_ | from o to B. Then, we claim that there can exist no
zero—M -information cut separating of and 9. Let (75, %/ *ink)
be any cut separating of and 9. By Definition 6, we must
have V(O ¢ s and V(L) e sink So. there must be at
least one edge going from ¥ to U™ which lies on the
path. This implies that at least one edge in the cut set carries
M -information flow. Since the conditions of Definition 10 are
not satisfied, this cut is not a zero—M -information cut. Finally,
since this is true for every cut separating of and 95, the claim
holds. [ ]

Proof of Theorem 2: As mentioned in the proof outline,
we prove the contrapositive of the theorem. Suppose there
exists no M-information path from the input nodes %, to
Vop- Then, by Lemma 6, there exists a zero—M -information
cut separating %, and V,. We use this to prove that the
transmissions of V, are independent of M.

Setup. Let the cut separating 7%, and V;, be given by
(s, Vi), so that W, C ¥ and V,, € V"% Then,
the cut divides € into the following sets: €*¢ = € N
(U5 x V™), the edges between the nodes in ¥/*; €Sk =
€ N (VS x psink) - the edges between nodes in ¥ *"; and
EU = BN (VS x VIK) the edges going from ¥ to
sk (the edges going from /8™ to /%™ will not be relevant



to our discussion). From the previous paragraph, Lemma 6
implies that (¥, U/s"%) is a zero—M -information cut, so by
Definition 10, we have that for all E; € €™,

I(M; X(E,) | X () =0 V& CE\{E}.  (43)
Note that the edges in €™ may belong to different time
instants. In particular, the time instant ¢ in the equation above
corresponds to the time of the edge FE;, whose flow is in
question.®

Order the nodes in /sink by time, and let °Vtsmk be the
subset of nodes in ™ at time ¢. Let 2 (¥,*"%) and @ (¥5"%)
respectively be the sets of edges collectively entering and
leaving all nodes in ™. We shall prove that the outgoing
transmissions of every node in o sink including those of Vqp,
must be independent of the message, i.e.,

I(M;X(Q(V)) =0 VYV ewik (44)

Initialization. Let ty be the first time instant ¢ for which
°I/ts"nk is non-empty. Then, we encounter two cases: either
to = 0, in which case the nodes in °I/tzi“k have no incoming
edges, or to > 0, and the nodes in %™ have incoming
edges. We shall first prove that in both cases, the outgoing
transmissions of Oth)i“k are independent of the message, i.e.
I(M; X(@(%f)‘“k))) =0.

(Case I) When ty = 0, %Si“k NYp = (). This is because the
cut separates 7, from Vi, with %, € 7, so no nodes in
Y1k can be input nodes. So, by the definition of (non-)input
nodes (Definition 3c), we must have

I(M; X @TE™) = 1(M: fagu (W) (49)
2 101w ) (46)
¢ 0, 47

where step (a) uses the DPI and step (b) makes use of the fact
that W (%) L M.

(Case IT) When ty > 0, the definition of ¢y implies that all
nodes at time ty — 1 are in U*¢, so all incoming edges of
V" must lie in the cut set, i.e., P(F") C €. Since the
cut is a zero—M-information cut, we have that for all E;,_; €
)

I(M; X (Ey-1)| X(8;,_1)) =0 V&, _1 CGy_1. (48)

By the definition of M-information flow for a set of edges
(Definition 8) and Proposition 5, we have

I(M: X(P(TE™)) | X(), ) =0 V8, C By
(49)

OIn fact, this is one of the central factors that prevents us from recursively
applying the DPI at every node, leading from 7, to Vop.

Once again, considering Q(7;5"%), we have
I(M; X(Q(7;™)) (50)
= I(M; faum (X(P(T™), W(T™)) (5D

(a) . .
< I(M: X (S (T), W ()

) (52)
210 X (@) |

+ I (M; W (T™) | X(P(T™))) (53)
©, (54)

where (a) and (b) follow from the DPI and the chain rule of

mutual information respectively. In step (c), the first expression

in the sum goes to zero by taking €;,—1; = 0 in (49) and the

second expression is zero since W (%) 1L {M, X (6;,-1)}.

and P (V") C ;,_1 (refer Definition 3b). So, from equa-

tions (47) and (54), we have that for all values of %,
I(M; X(Q(7™))) = 0.

; (55)
Continuation. Now, suppose that for some ¢ > ty, we have
I(M; X(Q(US"))) = 0. We shall prove that this implies

I(M; X (Q(S"™))) = 0. First, observe that
@(%sink) — (95 (ol/tsink) ) %cut) U (95 (ol/tsink) ) %sink) (56)

For convenience, let ", = P(7") N €™ and P =
P (Vimk) N gk, We have used the subscript ¢ — 1 here to
remind the reader that P (%,5™), which are the incoming edges

of %Si“k, are a subset of €;_;. Then, we have
P(V) = P U (57)

Since the cut is a zero—M -information cut, we have that for
every Ey_1 € P,

](M;X(Et,l) X( 271)) =0 V¢_,C%_1. (58
Therefore, by Definition 8 and Proposition 5,
I(M; X (PM) | X (1)) =0 VE_, CE_1. (59)

Secondly, 5k = @ (¥,51") N €%k, This is depicted in Fig. 2,
and explained in the caption. So,
[(M; X (931)) = I(M; X(Q(T;217) Ng™™))

@y

(60)

@ sink
< T(M; X(Q(T2))) (61)

where (a) follows from the fact that considering more ran-
dom variables can only increase mutual information, and (b)
follows from the induction assumption. Finally, consider how
X (Q(¥"%)) depends on M:

I(M; X(Q(T™))) (62)
= I(M; fopsn (X (P2 UP), W(T™)))  (63)
(a) . .
< I(M; X(P5™), X (P8, W(T™)) (64)
DI X(@) + 1M X (@) | X (7))

+ (M W(TS™) | X (20, X (P5)) (65)
“, (66)



where once again, (a) and (b) follow from the DPI and the
chain rule respectively. In step (c), the first and second terms
go to zero by equations (61) and (59) respectively, while the
third term is zero since W (") I {M,X(€;_1)} and
Pk U P C Gy

The proof follows from induction on ¢, so

I(M; X(Q(™)) =0 V> to, (67)
which in turn implies that
I(M;X(@(V)) =0 VYV ewik (68)

If there exists an output node whose transmissions depend
on M, then there can exist no cut consisting of edges with
zero M-information flow, and hence by Lemma 6, there must
be a path consisting of edges that carry M -information flow
between the input nodes and the output node in question. W

APPENDIX E
PROOF OF PROPOSITION 3

Proof: (=) Suppose the edge E; has no M -information
flow per Definition 4. This directly implies the condition
in Property 5c. Hence, Fy;(F;) = 0. This proves that if
Fn(E) = 1, the edge E; must have M-information flow.

(<) Suppose the edge E; has M-information flow per
Definition 4. Then,

3% CE&\{E} st I(M;X(E)|X(8))>0. (69

If €, =0, I(M; X(E,)) > 0, so by Property 5a, F;(E;) =
1.1f I(M; X (E;)) = 0, then (69) guarantees the existence of
some €; # ) such that

I(M; X (Ey)| X(%&])) > 0. (70)
Hence,
I(M; X(€))) (71)
D 1M X)) + I(MX(E) | X(E) (72)
(? I(M; X(Ey), X (&) (73)
IO X(B) + (M X(8) | X(B)) (74

(d) p
< I(M;X(8) | X(Ey)), (75)
where in (a), we simply added I(M; X (%;)) to both sides; in
(b) and (c), we used the chain rule in two different ways;
and in (d), we used the fact that I(M;X(Et)) = 0. So,
by Property 5b, we have that F,;(FE;) = 1. This proves the
converse. ]
Remark. It should be noted that Definition 4 only specifies
whether or not a given edge has M-information flow. It does
not quantify this flow. So Proposition 3 demonstrates the
uniqueness of our definition up to an unspecified information
volume. If we require that the conditions in Property 5 hold,
then any quantitative definition of information flow will go to
zero at an edge if and only if the M -information flow carried
by that edge is zero.
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