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Abstract—The “source localization” problem is one in which
we estimate the location of a point source observed through a
diffusive medium using an array of sensors. We obtain lower
bounds on the minimax risk (mean squared-error in location)
in estimating the location of the source, which apply to all
estimators, for certain classes of diffusive media, when using
a uniformly distributed sensor array. We show that for sensors
of a fixed size, the lower bound decays to zero with increasing
numbers of sensors. We also analyze a more physical sensor
model to understand the effect of shrinking the size of sensors as
their number increases to infinity, wherein the bound saturates
for large sensor numbers. In this scenario, it is seen that there is
greater benefit to increasing the number of sensors as the signal-
to-noise ratio increases. Our bounds are the first to give a scaling
for the minimax risk in terms of the number of sensors used.

I. INTRODUCTION

The source localization problem arises in many fields in
different forms. Our principal motivation comes from Elec-
troencephalography (EEG), a non-invasive brain measurement
modality which uses electrodes placed on the scalp to sense
electric potentials produced by neuronal activity within the
brain [2]. The neurons (or groups of neurons) which produce
this activity are usually modeled as current dipoles, and it is
often of clinical or neuroscientific interest to estimate their
locations [3]. For a single activated dipole within the brain
(which is modeled as a point source), the electrodes sample
a diffuse (blurred) representation of the dipole, as a result of
the spatial low-pass-filtering effect of the different layers of
the head, between the brain and scalp.

Our recent work [4] suggests that source localization can
benefit greatly from an increase in sensor density. Revisiting
the Nyquist rate arguments presented in [2] revealed that
the question of how source imaging resolution is affected
by sensor density has not been addressed. We argued intu-
itively that under appropriate conditions, the right algorithms
might be able to recover the brain signal with much higher
fidelity if more sensors were used. To follow up on these
intuitive arguments, Grover provides an information-theoretic
bound [5] on the accuracy of source localization algorithms.
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This information-theoretic bound, however, was derived for
the unsampled, continuous-space potential on the scalp, or
equivalently, in the limit of the number of sensors going to
infinity. Hence, this bound does not substantiate the claim that
source localization can benefit from increased sensor density.

Earlier work by Mosher et al. [6] also gave numerical lower
bounds on source localization error, with some discussion
on sensor density. However, the Cramer-Rao lower bounds
derived by them do not apply to biased estimators, including
several commonly used source localization algorithms [7], [8].

This paper seeks to address the shortcomings of earlier
methods by deriving lower bounds on the minimax risk for
the source localization problem, which apply to all estimators
(biased and unbiased), and which capture how the bound
scales with increasing numbers of sensors. Previous lower
bounds are based on “spherical head models” [2], [4], which
admit analytical solutions for the potential of a single dipole.
But spherical models are not easily amenable to analytical
lower bounds which seek to capture scaling in the number of
sensors, because the spherical surface does not permit uniform
sampling [9]. We therefore restrict our analysis to a source
localization problem on a one-dimensional “circular” domain
(to be described in detail in Section II). While this simplified
model makes crucial assumptions (such as shift-invariance)
that do not hold in realistic brain models, the techniques
presented here extend naturally for deriving numerical bounds
in more complex settings.

The one-dimensional toy problem is an effective tool for
understanding bounds on source localization accuracy in other
settings as well. A vast literature on linear inverse problems
and deconvolution algorithms exists (see [10] for an intro-
duction to this field), and has addressed the reduced one-
dimensional problem in broad settings (see [11]–[13] and
references therein). However, our setting and interpretation
appears to be unique, since most prior work focuses on recov-
ering a whole function (given certain smoothness constraints),
rather than locating a point source [11]. Work that does address
point sources and location-based error metrics [13, Ch. 7,
Sec. 2] does not, to our knowledge, address scaling in the
number of sensors.

Hence, we believe that this paper is the first to give lower
bounds on the minimax error in estimating the location of a
point source observed by sensors through a diffusive medium,
and corrupted by additive white Gaussian noise. We are also
the first to analyze the implications of physical sensor models
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on such lower bounds. A simplistic theoretical model might
assume that the number of sensors can increase without bound,
while still maintaining a fixed SNR at each sensor. We show
that this is non-physical in our setting, and derive numerical
bounds which have radically different asymptotic behaviour.

We describe the problem setting in Section II and the
minimax techniques and our main results in Section III. We
conclude in Section IV with a discussion on the goodness of
our bounds, and on possible extensions.

For EEG source localization, we intend to find algorithms
that achieve scalings close to the bounds we present. We also
expect to build upon the techniques presented in this paper to
derive bounds for spherical and realistic brain models.

II. SOURCE LOCALIZATION IN 1D

A. Description of the domain

We assume that the point source is located on a circle
of circumference S. We use the variable ‘s’ (for space) to
represent a general point on this domain. We can also view
this domain as a line, on which signals are periodic with period
S. The point source is therefore located somewhere within one
period. We denote the set of possible locations by Θ = [0, S).

B. Sensor configuration

Sensors are assumed to be uniformly distributed over the
domain, i.e., if there are m sensors, they are placed at locations
s = 0, S/m, 2S/m, . . . , (m−1)S/m (the offset of the first
sensor is arbitrary, so without loss of generality we take it to
be 0). The lower bounds we provide are for this specific sensor
configuration. For a discussion on why this configuration
might be an appropriate choice in the minimax setting, see
Section IV.

C. Signal model

All “continuous-space” signals (analogous to continuous-
and discrete-time signals) on the aforementioned circular do-
main are of the form f : Θ 7→ R. The point source located
at θ is represented by the impulse signal, f(s; θ) = δ(s− θ),
where δ(·) is the Dirac delta function. The sensors observe
this signal through the diffusive medium, which, intuitively
speaking, blurs the impulse. More concretely, we assume that
the medium is linear and shift-invariant, so that it can be
characterized by a spatial impulse response. Then, blurring
would correspond to low-pass filtering. Let this impulse re-
sponse be given by g(s). Then, the noiseless, continuous-
space signal (post-filtering and pre-sampling) is given by the
convolution, x(s; θ) = (g ∗f)(s) = g(s− θ). Here, we further
make the simplifying assumption that g(s) has a sufficiently
restricted support, so that aliasing effects are avoided, and
x(s; θ) is always well-defined. To be precise, g(s) = 0 when
|s| > w/2, where the “width” w of the impulse response
satisfies w < S/2 (the reason for the extra factor of 1/2 will
become clear in a later section). For the proof, g(s) is also
assumed to be Lipschitz continuous with parameter κ, i.e.,
|g(u)− g(v)| ≤ κ|u− v| ∀ u, v ∈ Θ.

D. Sensor and noise models
We consider two sensor models: a simplistic “point sen-

sor” model and an “integrator sensor” model, to be used in
Sections III-B and III-C respectively.

In the “point sensor” model, sensors sample the shifted
continuous-space impulse response, with some additive noise.
We denote the noiseless sampled version of x(s; θ) by the
m-length vector x(θ),

x(θ) =

[
x(0; θ), . . . , x

(kS
m

; θ
)
, . . . , x

( (m−1)S

m
; θ
)]T

(1)

where m is the number of sensors and k ∈ {0, 1, . . . ,m− 1}.
Additive noise ε corrupts x(θ) to produce the noisy sensor
values

y = x(θ) + ε. (2)

The noise ε is zero-mean and Gaussian, ε ∼ N (0,Σ). We
restrict our analysis to a “sensor noise” setting, wherein Σ =
σ2I, i.e., noise is i.i.d. across sensors.

In the “integrator sensor” model, sensors have a width which
decreases as their number grows to infinity. Concretely, the
k-th sensor which is located at s = kS/m occupies the space
((k− 1

2 )S/m, (k+ 1
2 )S/m). The signal sensed by this sensor is

given by the k-th element of x(θ),

xk(θ) =

∫ (k+ 1
2 )S/m

(k− 1
2 )S/m

x(s; θ)ds. (3)

Here, a white noise process ε(s) additively corrupts the
continuous-space signal x(s; θ) prior to sampling (see Fig. 1).
ε is generated by integrating ε(s) over each sensor’s width.
This leads to i.i.d. noise values at sensors (since sensors have
no overlap), with variance inversely proportional to m, i.e.,
σ(m) ∝ 1/

√
m (refer Appendix A in the full version of this

paper [1] for an explanation).
With the addition of Gaussian noise, each possible source

location θ gives rise to a different distribution at the sensors,
denoted by P (θ) = N (x(θ),Σ). y is therefore one sample
from the distribution P (θ). The space of distributions pro-
duced by all possible source locations is P = {P (θ) : θ ∈ Θ}.

In the source localization problem, we receive n “trials”1

of y according to equation (2), for the same point source θ,
using which we need to estimate the location of the source.
Note that noise is assumed to be i.i.d. across trials, i.e., the n
realizations of y are independently drawn from P (θ), for the
same location parameter θ.

III. LOWER BOUNDS ON THE MINIMAX RISK FOR THE
ONE-DIMENSIONAL MODEL

A. Preliminaries
Several techniques for deriving lower bounds on the mini-

max risk are described in [14]. We follow the excellent tutorial
of John Duchi [15] to outline the steps involved.

1The word “trials” comes from neuroscience literature, where multiple trials
of an experiment are run, with the same stimulus being given to the participant
in each trial, evoking the same response in the brain (with some trial-to-trial
variability, which we ignore). For our purposes, we assume that trials are i.i.d.
realizations of sensor noise.
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Fig. 1. A block diagram of the two sensor models described in section II-C.

Consider the following estimation problem: we have n i.i.d.
random samples Y n from a distribution P , which is indexed
by a parameter θ ∈ Θ. Denote the set of these distributions
by P = {P (θ) : θ ∈ Θ}. Suppose we now wish to estimate
θ from Y n. Define a loss metric ρ(θ, θ̂) (e.g. ρ(θ, θ̂) = |θ −
θ̂|). For this metric, we can define the minimax risk over all
possible estimators θ̂(Y n) and all parameters θ ∈ Θ:

Mn(P,Φ◦ρ) = inf
θ̂

sup
θ∈Θ

E[Φ◦ρ(θ̂(Y n), θ)] (4)

where Φ is any non-decreasing function (e.g. Φ(ρ) = ρ2).
We start by lower bounding the maximum risk of the esti-

mation problem with the average risk of a multiple hypothesis
testing problem. For this, we first need to define a 2δ-packing.

Definition 1: A set ΘV = {θv : v ∈ V} for some finite
index set V ⊂ N is said to be a 2δ-packing in the ρ-metric if

ρ(θi, θj) ≥ 2δ ∀ θi, θj ∈ ΘV . (5)

Theorem 1: If we can find a 2δ-packing ΘV of Θ, then we
can lower bound the minimax estimation risk by the average
testing risk:

Mn(P,Φ◦ρ) ≥ Φ(δ) inf
ψ

P(ψ(Y n) 6= V ) (6)

where V is the unknown true hypothesis which takes values
uniformly from V , and ψ is our estimate of the hypothesis.
For a proof of this theorem, we refer the reader to [14,
Sec. 2.2], or to [15, Prop. 13.3]. Intuitively, Theorem 1 says
that the error in estimating θi is likely to be large if it is
difficult to distinguish θi from θj , i.e. if the probability of
error is high.

We now need to lower bound the probability of error in the
hypothesis testing problem. The simplest way to do this is to
consider a binary hypothesis test and use what is known as
Le Cam’s method:

Theorem 2: For a binary hypothesis test, i.e., V = {0, 1},

inf
ψ

P(ψ(Y n) 6= V ) = 1− ‖P0 − P1‖TV (7)

where Pi is short-hand for P (θi) and ‖P0 − P1‖TV is the
total variation distance between the two distributions, defined
as ‖·‖TV = 1

2‖·‖1.
For a proof, we refer the reader to [14, Thm. 2.2], or to [15,
Prop. 2.11] for a more readable account. Intuitively, Theorem 2
states that the minimum achievable error probability in a
binary hypothesis testing problem is related to the distance
between the distributions corresponding to the two hypotheses.

s

0 S

θ0

x(s; θ0)
θ1

x(s; θ1)

2δ
w

Fig. 2. Depiction of the continuous-space signals produced by two hypotheses,
θ0 and θ1. Note that each signal is a shifted impulse response, and therefore
has a support of size w. The set {θ0, θ1} is a 2δ-packing of Θ, so the signals
are separated by a distance 2δ.
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Fig. 3. Plot of the samples of the difference signal, ∆(k). The total size of
the support of the difference signal is w+2δ, hence at most

⌊
(w+2δ)m

S
+ 1

⌋
samples of ∆(k) are non-zero.

Thus, the final lower bound can be written as

Mn(P,Φ◦ρ) ≥ Φ(δ)

2

(
1− ‖Pn1 − Pn0 ‖TV

)
. (8)

The superscripts “n” remind us that these are n-fold product
distributions, since we have n i.i.d. trials used in the estimate.
The difficulty in Le Cam’s method lies in selecting the two
hypotheses to trade-off the effect due to a small value of δ
and a large value of ‖Pn1 − Pn0 ‖TV appropriately, to derive
the tightest possible bound.

B. Lower bounds using Le Cam’s method
For the source localization problem, we measure risk in

terms of the squared-distance between the true location and the
estimated location. Hence, our loss function is Φ(ρ(θ, θ̂)) =
|θ − θ̂|2, where θ̂ is some estimate of the location based on
n trials of the noisy sensor observations y. We now state the
main result of this paper.

Theorem 3: For a source localization problem as defined in
Section II under the point sensor model, the minimax risk in
estimating the location of a point source is lower bounded by

Mn(P,Φ◦ρ) ≥ sup
0<δ<S

4

δ2

2

[
1−

√
2nκ2δ2

σ2

(
(w+2δ)m

S
+ 1

)]
.

For sufficiently large m, the bound can be approximated by

Mn(P,Φ◦ρ) &
1

32

σ2S

nmκ2w
. (9)

Proof: Starting from equation (8), we proceed to derive
the total variation distance for the distributions of interest.
Using Pinsker’s inequality [14, Lemma 2.5] and the convenient
tensorization of the KL-divergence [15], we see that

‖Pn1 − Pn0 ‖2TV ≤
1

2
DKL(Pn0 ‖Pn1 ) =

n

2
DKL(P0‖P1). (10)

For multivariate normal distributions with the same covariance,
the KL-divergence is given by

DKL(P0‖P1) = (µ
0
− µ

1
)TΣ−1(µ

0
− µ

1
), (11)

3



where µ
0

and µ
1

are the means of P0 and P1 respectively [16].
For the case of sensor noise, Pi = N (x(θi), σ

2I), as described
in Section II-D. Hence, combining equations (8), (10) and (11),
we see that

Mn(P,Φ◦ρ) ≥ δ2

2

[
1−

√
n

2σ2
‖x(θ0)− x(θ1)‖2

]
. (12)

Let ∆
def.
= x(θ0)−x(θ1) for brevity. Also, let ∆(k) denote the

k-th element of ∆, and IA(k) denote the indicator function
of k belonging to the set A (i.e., IA(k) = 1 if k ∈ A, and 0
otherwise). Then, we have

‖∆‖2 =

m−1∑
k=0

|∆(k)|2 =

m−1∑
k=0

|∆(k)|2 I{`:|∆(`)|6=0}(k) (13)

=

m−1∑
k=0

∣∣∣x(kS
m

; θ0

)
− x
(kS
m

; θ1

)∣∣∣2I{`:|∆(`)|6=0}(k) (14)

=

m−1∑
k=0

∣∣∣g(kS
m
− θ0

)
− g
(kS
m
− θ1

)∣∣∣2I{`:|∆(`)|6=0}(k) (15)

where x(s; θi) is the continuous-space filtered signal described
in Section II-C. For an impulse response g which is Lipschitz
continuous with parameter κ, we can upper bound the term
within the summation:∣∣∣g(kS

m
− θ0

)
− g
(kS
m
− θ1

)∣∣∣ ≤ κ|θ0 − θ1| = κ · 2δ (16)

since |θ0 − θ1| = 2δ by virtue of the 2δ packing. Hence,

‖∆‖2 ≤ 4κ2δ2
m−1∑
k=0

I{`:|∆(`)|6=0}(k) = 4κ2δ2‖∆‖0. (17)

‖∆‖0 is the number of non-zero elements in ∆, which is equal
to the number of sensors in the total region covered by the
signals x(s; θ0) and x(s; θ1) (see Figs. 2 and 3). Therefore,
‖∆‖0 =

⌊ (w+2δ)m
S + 1

⌋
, since at most a fraction (w+ 2δ)/S

of the m sensors (plus 1, to account for edge-effects) can lie
in the region covered by the two impulse responses. The final
upper bound on ‖∆‖2 is hence

‖∆‖2 ≤ 4κ2δ2
⌊(w+2δ)m

S
+ 1
⌋
≤ 4κ2δ2

(
(w+2δ)m

S
+ 1

)
.

(18)
Since sensors are uniformly distributed, and since the domain
is periodic, this holds even if θ0 lies at the edge of the domain
(close to s = 0, for example). In such a case, one part of the
signal x(s; θ0) will appear at the left edge of the domain,
and the remaining part will appear as the repetition from the
period [S, 2S), at the right edge of the domain. Also note that
the two signals x(s; θ0) and x(s; θ1) overlap at most once,
since w < S/2, as stated in Section II-C.

Combining equations (12) and (18),

Mn(P,Φ◦ρ) ≥ δ2

2

[
1−

√
2nκ2δ2

σ2

(
(w+2δ)m

S
+ 1

)]
. (19)

This bound holds for any feasible 2δ-packing. We can derive
the tightest possible bound by maximizing the above quantity

over all feasible δ. Since the maximum attainable separation
between two hypotheses on the periodic domain is S/2, we
maximize δ over (0, S/4). This yields the theorem.

To derive the approximation, we observe that for sufficiently
large numbers of sensors, the optimal value of δ starts becom-
ing small, as hypotheses must chosen to be closer in order to
make the error probability large. Hence, neglecting edge ef-
fects and terms of order δ3, we can give an approximate bound
for large m using a heuristic: tighten the bound by choosing√

2nκ2δ2wm
σ2S = 1

2 . This is achieved for δ =
√

σ2S
8nmκ2w , so that

for Φ(δ) = δ2, equation (19) becomes

Mn(P,Φ◦ρ) &
1

32

σ2S

nmκ2w
. (20)

This completes the proof.

C. Towards a more physical sensor model

The bound in Theorem 3 may mislead one to think that
the error in source localization goes to zero, as the number
of sensors goes to infinity. This observation contradicts the
information-theoretic lower bound given in [5], where even
with an infinite number of sensors, the lower bound is strictly
greater than zero. This indicates that the bound in Section III-B
is failing to capture some effect which leads to saturation of
error as the number of sensors increases.

Indeed, the bound in Theorem 3 assumes that an arbitrarily
large number of sensors can be squeezed into a finite amount
of space, and that these sensors still have the same SNR.
This is non-physical, since in reality, each sensor has a
certain width, and the value measured by it is the integral
of the continuous-space signal within that width (analogous
to a sample-and-hold circuit, which integrates a continuous-
time signal over a short period). If the width of a sensor is
decreased, then effectively, its SNR reduces (this is explained
in Appendix A in the full version of this paper [1]).

This observation motivates the “integrator sensor” model de-
fined in Section II-D. With this model, the bounding technique
used in Section III-B no longer easily admits a closed-form
solution which gives a bound for all values of m. We instead
compute the bound numerically, using exact expressions for
error probability in a binary hypothesis test. For Gaussian
distributions of equal variance and a uniform prior on the
hypotheses, the minimum possible error probability (over all
tests) is a Q-function in the distance between their means [17,
Ch. 7],

Pe = inf
ψ

P(ψ(Y n) 6= V ) = Q

(‖µ
0
− µ

1
‖

2σ(m)

)
, (21)

where Q(x) =
∫∞
x

1√
2π
e−u

2/2du. Hence, from Theorem 1,

Mn(P,Φ◦ρ) ≥ Φ(δ)Pe = δ2Q

(
‖x(θ0)− x(θ1)‖

2σ(m)

)
. (22)

This bound is valid for any {θ0, θ1} constituting a 2δ-packing
of Θ. To numerically optimize over all possible packings,
we relax the process by fixing θ0 = 0 and optimizing over
θ1 = 2δ. We compute sensor values for a triangular impulse
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Fig. 4. A numerically generated plot of the lower bound on minimax risk
of source localization, against the number of uniformly distributed sensors,
m, following the “integrator sensor” model (code available online [1]). The
different curves are for different numbers of “trials”, n (number of i.i.d. sensor
observations). The bound saturates for large m, indicating that for a fixed
number of trials, there is decreasing benefit to using more sensors. However,
the plot suggests that with more trials, the bound saturates at increasingly
larger numbers of sensors. Thus, there may be benefit to increasing the number
of sensors when you have more trials.

response by performing numerical integration, and find the
best possible δ by grid search.

Plotting this numerically-computed bound for different
numbers of trials reveals some interesting trends (see Fig. 4).
First, the bound saturates as m grows large, matching the
behaviour of the information-theoretic bound. Second, the
lower bound on error is larger for smaller numbers of sensors,
as we expect. Third and most importantly, as the number
of trials increases, the bound begins to saturate only at a
larger number of sensors. In other words, there is increased
benefit in using more sensors, when we also have more trials.
This substantiates the intuition given in [4]: a larger number
of sensors will sample a larger number of high-frequency
components of the source signal (and hence allow us to locate
it better), but only if the noise floor is sufficiently low. Noise
variance, in turn, can be reduced by averaging over multiple
trials.

IV. DISCUSSION

While the lower bound presented in Section III-B is non-
physical for a large number of sensors, it still gives some
important insights. The bound tells us how the error scales
with the number of sensors up to m =

⌊
S
c

⌋
, for sensors

of a constant width c. Beyond this, averaging noise over a
larger number of trials n may help one achieve a target mean
squared error in location. An analytical derivation of the trade-
off between m and n in achieving a certain target MSE is
relegated to future work. Further, more sophisticated tech-
niques for deriving lower bounds, such as Fano’s method [14,
Sec. 2.7.1] are yet to be analyzed.

We also note that the minimax bounds from compressive
sensing literature [18] do not apply in our setting, because
those consider the problem of recovering the whole source
signal, f(s; θ). The loss function used there is hence the energy
of the difference signal,

∫
|f(s)− f̂(s)|2ds. We, on the other

hand, are interested in bounding the minimax error in location,
i.e., |θ − θ̂|2.

While the bounds in Section III-B were derived for a one-
dimensional circular domain, extensions to a 1D linear domain
(of fixed length S) and to a d-dimensional domain (circular or
linear) are fairly straightforward, under certain conditions. For
a 1D linear domain, we require that sensors capture the entirety
of the impulse response even at the edges of the domain.
Hence, sensors must be placed uniformly in [−w/2, S+w/2].
For extending to d dimensions, it suffices to apply Assouad’s
Lemma [14, Sec. 2.7.2] to separate the problem into d inde-
pendent 1D problems. Such extensions substantially broaden
the application domains where this bound could be useful.

Also note, the bounds derived in this paper apply only
when sensors are uniformly distributed. Intuitively, this is the
correct choice in the minimax setting, since any non-uniform
placement will have one or more points which is far from all
sensors. The “maximization” over θ ∈ Θ would then select a
θ for which the value of the impulse response at the sensors
is smallest, so that SNR is minimized.
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APPENDIX A
SNR IN THE INTEGRATOR MODEL

In the integrator model of sensors defined in Section II-D,
recall that the samples are given by equation (3). Consider a
sensor located at the point s0 ∈ [0, S) and with a width of
S/m. That is, we assume each of the m sensors occupies the
maximum area that it can, 1/m of the total. As m grows large,
the size of each sensor must shrink in order to accommodate
their larger number.

In order to remain consistent with our previous notation,
we first define the index, k, of the sensor located at s0. (Note
that as m increases, the index k must grow while keeping the
position of the sensor fixed, so that we’re seeing how the SNR
changes at the same point).

k =
⌊ms0

S

⌉
, (23)

where bze is read as “round of z”, denoting the closest integer
to the point z ∈ R. Note that as m grows large, kS/m→ s0.

We now compute the approximate SNR of the sensor located
at s0 as follows. The power of the signal is given by the
squared absolute value of the samples,

|xk(θ)|2 =

(∫ (k+ 1
2 )S/m

(k− 1
2 )S/m

x(s; θ)ds

)2

(24)

(a)
≈
(
S

m
x
(kS
m

; θ
))2

(25)

(b)
≈ S2

m2

(
x(s0; θ)

)2
, (26)

where in approximation (a), we have assumed that
the signal is roughly constant in the small interval(
(k− 1

2 )S/m, (k+ 1
2 )S/m

)
, taking the value of the signal at

s = kS/m. In approximation (b), we make use of the fact
that for sufficiently large m, kS/m ≈ s0. Note a key step in
the power computation: the integrand in equation (24) is not
|x(s; θ)|2, because the sensor will average out the signal as a
part of its sensing process.

Hence, irrespective of the location of the sensor, s0, the
signal power diminishes as 1/m2 since the sensor size must
diminish at least as fast as 1/m, if the number of sensors has
to increase to infinity.

The noise variance of the sensor located at s0 is computed
similarly:

E[ε2k] = E

[(∫ (k+ 1
2 )S/m

(k− 1
2 )S/m

ε(s)

)2
]

(27)

= E

[∫ (k+ 1
2 )S/m

(k− 1
2 )S/m

ε(s)ds

∫ (k+ 1
2 )S/m

(k− 1
2 )S/m

ε(s′)ds′

]
(28)

= E

[∫ (k+ 1
2 )S/m

(k− 1
2 )S/m

∫ (k+ 1
2 )S/m

(k− 1
2 )S/m

ε(s)ε(s′)dsds′

]
(29)

=

∫ (k+ 1
2 )S/m

(k− 1
2 )S/m

∫ (k+ 1
2 )S/m

(k− 1
2 )S/m

E[ε(s)ε(s′)]dsds′ (30)

=

∫ (k+ 1
2 )S/m

(k− 1
2 )S/m

∫ (k+ 1
2 )S/m

(k− 1
2 )S/m

Rε(s, s
′)dsds′ (31)

=

∫ (k+ 1
2 )S/m

(k− 1
2 )S/m

∫ (k+ 1
2 )S/m

(k− 1
2 )S/m

σ2δ(s− s′)dsds′ (32)

=

∫ (k+ 1
2 )S/m

(k− 1
2 )S/m

σ2ds (33)

= σ2 S

m
, (34)

where Rε(s, s′) = σ2δ(s− s′) is the autocorrelation function
of the white noise process, and σ2 is the amplitude of the
white noise power spectral density.

We can understand how the SNR of the sensor at s0 scales
with m, therefore, by taking the ratio of (26) and (34)

SNR(s0) =
S2

m2

(
x(s0; θ)

)2 · m
Sσ2

(35)

=
S

mσ2

(
x(s0; θ)

)2 ∝ 1

m
. (36)

Hence, as the number of sensors m grows to infinity, their
sizes must necessarily reduce at least as fast as 1/m, and as
a result, their SNR also falls at least as fast as 1/m, when we
view these sensors as integrators.
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