
Accounting for synergy is essential for inferring information flow 

Summary: Venkatesh et al. (2020) recently proposed a new framework for understanding flow of information about a 
"message" in a neural circuit, where the message could represent a stimulus or a response. Despite its novelty, their analysis 
was purely theoretical and did not address neuroscientific complexities in much detail. Through simulations on neuronal 
networks, we show that their theory stands the basic test of empirical validation and explain how their model can be employed 
in practice. We design networks of "theta" neurons to examine two common experimental situations: (1) an upstream brain 
region encodes information in the form of a spike-train, and is then processed by a downstream region, whose flows we wish 
to understand; (2) multiple populations encode and transmit information about a stimulus, and we sample only a subset of 
neurons in these populations. Our results, accompanied by models drawn from neuroscience, demonstrate that several 
aspects hypothesized by Venkatesh et al. can indeed be observed in realistic neural populations: (i) accounting for "synergy" 
is essential for seamlessly tracking information flow about a specific message; (ii) measuring edges rather than nodes can 
help avoid ambiguity in flow estimates; (iii) we can often use simplified correlation-based techniques to efficiently arrive at 
information-theoretically meaningful conclusions, while being aware of some caveats we describe. 

 
Introduction: Recently, Venkatesh et al. (IEEE Trans. Inf. Thy. 2020) described a new framework for defining and inferring 
information flow about a specific message. They modeled the brain as a computational system within which they defined 
information flow tied to a "message" (e.g., a stimulus or a response), so as to capture the dynamics of how the flow may 
evolve. Their system was designed to allow for feedback and to give clearer interpretations in settings where Granger 
Causality provided ambiguous or incorrect answers. In proposing a new measure for information flow about a message, 
Venkatesh et al. make two important theoretical arguments: (i) it is necessary to account for "synergy" when detecting 
information flow; (ii) it is essential to measure edges to avoid ambiguities in flows. Here, "synergy" refers to the idea that two 
variables can jointly contain information about a message M, while individually containing little or no information about M (e.g., 
as measured by mutual information). This concept has been explored by many works in the literature in the context of encoding 
(e.g., see Schneidman et al., J Neurosci 2003; Gat & Tishby, NeurIPS 1999; Timme and Lapish, 2018). Venkatesh et al. 
(2020) formally connect synergy with information flow by developing an information-theoretic measure based on conditional 
mutual information, where conditioning plays the crucial role of capturing synergy. In the present work, we provide concrete 
simulations grounded in neuroscience to show how their information-theoretic measure may be estimated (approximately) in 
practice, and show how conditioning reveals synergy in experimental settings to support their main theoretical arguments. 

Results: We present results from simulations of two neuronal network models, reflecting common experimental situations. 
Model 1: We first consider a setting where a binary stimulus (or "message"), M, is encoded in the form of a spike train 

𝑋𝑀 by an upstream (e.g. sensory) region, and is transmitted for further processing to a downstream region. The downstream 
region is designed to show how synergy may arise in a neural circuit: it corrupts 𝑋𝑀 with a noisy spike train 𝑋𝑍, retains the 
noise 𝑋𝑍 along a separate path, and then recovers 𝑋𝑀 by "subtracting" 𝑋𝑍 from the corrupted message (see Methods for 
details). Biological examples of such cancellation effects appear in the context of "corollary discharge" or "efference copies", 
for instance, feedback of eye-movement to vision, or the inability to tickle oneself (see Fukutomi & Carlson, Front. Int. Neuro., 
2020, for a recent review). We are interested in tracking where information about M is present, at each time instant in the 
downstream network, and understanding which edges it flowed along. 

Model 2: Next, we consider a setting where a binary stimulus M is encoded in the average firing rate of a population of 
neurons, 𝑃𝑀. After a delay, this population receives a corrupting noisy input 𝑃𝑍 from another population encoding a continuous 
noise variable Z. When there is a large amount of noise, 𝑃𝑍 is suppressed by a third inhibitory population after an axonal 
delay. We are interested in tracking the flow of M as it is processed in this circuit. We also consider subsamplings of these 
populations, where only a subset of the neurons in each population is recorded, as in a multi-electrode array recording. 

In both aforementioned models, when information about M is encoded in the network in the form 𝑋𝑀 + 𝑋𝑍, only upon 

conditioning on 𝑋𝑍 are we able to statistically detect the presence of information flow in 𝑋𝑀 + 𝑋𝑍 (see p-values in Fig. 1c). 
We compute an approximation of Venkatesh et al.’s information flow measure at each node, within every 10ms time window. 
In Model 2, we use partial correlation, and in Model 1, we use mean absolute conditional correlation (MACC), as proxies for 
conditional mutual information. Partial correlation has a caveat: since it is the average of the conditional correlation over all 
values of the conditioning variables, i.e., since 𝜌𝑀𝑋|𝑌 = 𝔼𝑦[𝜌𝑀𝑋|𝑌=𝑦], positive and negative conditional correlations may 

cancel. This is indeed what happens if we use partial correlation in Model 1, which is why we instead used the mean absolute 
conditional correlation, i.e., 𝔼𝑦|𝜌𝑀𝑋|𝑌=𝑦|. We compare these approximations of information flow to simple Pearson 



correlation, and we find that in each Model, only the partial or conditional variant reveals where information flow is present at 
all time instants that the message is statistically discernible (see Fig. 1). This shows how accounting for synergy through 
conditioning is essential to detecting information flows in such circuits. 

Another important theoretical argument propounded by Venkatesh et al. (2020) is that edges must be measured, i.e., we 
need to know both the sending node and the receiving node of each transmission. To see why, suppose two nodes 𝑋1 and 
𝑋2 transmit the message M at time t=1, and two other nodes 𝑋3 and 𝑋4 transmit the same message at t=2. A node-only 
examination of flows, e.g. using Granger causality, would be unable to determine whether 𝑋3 received the message from 𝑋1 

and 𝑋4 from 𝑋2, or 𝑋3 from 𝑋2 and 𝑋4 from 𝑋1, or some other combination of the two. Regression-based methods such as 
Granger causality implicitly overlook this issue, since they would assign a weight of half each to 𝑋1 and 𝑋2. Measuring and 
assigning information flow to edges, on the other hand, automatically resolves this ambiguity. 

Methods: Simulations used reparametrized QIF ("theta") neuron models (Ermentrout and Kopell, SIAM 1986). 
Model 1: The stimulus-dependent spike train 𝑋𝑀 was generated using a random network of excitatory and inhibitory theta 

neurons, which was fed a constant current input based on M. The spike train itself was the time-dependent output of one 
neuron in this network which showed a sustained difference in firing rate for different values of M (Fig. 1b). The downstream 
network consists of three “nodes", each consisting of a group of neurons: 𝑋1 and 𝑋3 perform "XOR" (exclusive-or) operations, 

while node 𝑋2 is a delay element. We simulate 1000 trials of spiking data, and compute p-values using a permutation test. 
Model 2: The 𝑃𝑀 population consisted of 200 excitatory and 200 inhibitory neurons with random interconnections. The 

𝑃𝑍 population consisted of 100 excitatory and 100 inhibitory neurons, while the inhibitory population consisted of 100 
excitatory neurons connected to 300 inhibitory neurons. The inhibitory population would activate and suppress 𝑃𝑍 (after a 

delay) if the firing in the 𝑃𝑀 population exceeded a threshold. We simulated 100 trials of data and computed p-values using 
a standard chi-squared test. 

XOR models such as in Model 1 have been considered in the past (e.g. Timme and Lapish, 2018; Gidon et al., Science 
2020, give biological context), and are well known examples of synergy. However, Venkatesh et al. (2020) were the first to 
analyze synergy in the context of information flow, and our work is the first concrete demonstration of this. Although Timme 
and Lapish simulate and measure information quantities in simple XOR networks, they do not compute information flow across 
trials, as we do, and instead measure mutual information between two time windows, which is less clearly interpretable. 
 

 

 

 

 

 

 

 

 

 
 
 
Figure 1: (a) A schematic of Model 1. (b) PSTH of 𝑋𝑀 for M=0 and M=1. Highlighted regions show when M is discernible 
from 𝑋𝑀. (c,d) Correlation between 𝑀 and transmissions of 𝑋1 and 𝑋3 respectively. Observe that between 90 and 150ms in  

(c), statistically significant information flow of M is seen only when using MACC, i.e., when conditioning on 𝑋𝑍, as depicted in 
(e). (f) Schematic of the neural circuit in Model 2. (g) Correlation between M and transmissions shown in (f). Again, statistically 
significant information flow is seen between 100 and 150ms (at all levels of subsampling) only when using partial correlation. 
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