
Understanding encoding and redundancy in grid cells using partial information decomposition 

Summary: The brain is capable of performing reliable computation using neural circuitry that has high internal variability: this 
can only be possible if the brain controls for this variability through redundancy. Understanding such mechanisms will likely 
require quantifying the degree of uniqueness, redundancy and synergy that exists in the neural code. Recently, the literature 
in information theory has developed a structured framework called Partial Information Decomposition (PID) [Bertschinger et 
al. 2014; Lizier et al., 2018], which defines the unique, redundant and synergistic interactions between two or more variables 
in conveying information about a particular message. While the idea of decomposing mutual information into unique, 
redundant and synergistic components has roots in neuroscience [Schneidman et al., 2003], it has not received significant 
attention therein since these recent developments. In this abstract, we show two instances in which the PID provides insights 
into neural encoding, using computational models of grid cells based on prior work by Sreenivasan and Fiete [2011]. (1) We 
identify redundant information in the grid cell code, which we associate with error correction capability, and identify redundant 
and unique information when error correction is in effect. (2) We find that determining the animal’s location at a coarse spatial 
resolution requires the aggregation of synergistic information from just as many grid cell networks, as required to determine 
location at a much finer resolution: this might have implications for downstream networks that utilize grid cell outputs [Fiete et 
al., 2008]. More generally, our results suggest that computing the PID in different settings might provide fine-grained insights 
into neural coding and function that are harder to attain with simpler correlation-based analyses. For instance, recent work by 
Venkatesh et al. [2019] explicitly connects the PID with a formal definition for information flow in the brain. 

 
Methods: We first provide an overview of the Partial Information Decomposition framework. The bivariate PID describes how 
the mutual information between a “message” (𝑀) and two other random variables (𝑋 and 𝑌) can be decomposed into four 
non-negative components: information about 𝑀 that is (i) unique to 𝑋; (ii) unique to 𝑌; (iii) redundant, which can be recovered 
from either 𝑋 or 𝑌; and (iv) “synergistic”, which can only be recovered when 𝑋 and 𝑌 are taken together: 

𝐼(𝑀; (𝑋, 𝑌)) = 𝑈𝐼(𝑀: 𝑋\𝑌) + 𝑈𝐼(𝑀: 𝑌\𝑋) + 𝑅𝐼(𝑀: 𝑋; 𝑌) + 𝑆𝐼(𝑀: 𝑋; 𝑌)              (A) 

Bertschinger et al. [2014] provided a mathematical definition for unique information which satisfies many intuitively desirable 
properties, and also determines the values of the redundant and synergistic components: 

𝑈𝐼(𝑀: 𝑋\𝑌) = 𝑚𝑖𝑛𝑞∈𝛥(𝑝)𝐼𝑞(𝑀; 𝑋|𝑌)  where  𝛥(𝑝) = {𝑞: 𝑞(𝑚, 𝑥) = 𝑝(𝑚, 𝑥), 𝑞(𝑚, 𝑦) = 𝑝(𝑚, 𝑦)}    (B) 

Here, 𝑝 is the true joint distribution of (𝑀, 𝑋, 𝑌), and 𝐼𝑞(𝑀; 𝑋|𝑌) is the conditional mutual information between 𝑀 and 𝑋, 

given 𝑌, under the joint distribution 𝑞. 𝛥(𝑝) is the set of all distributions that have the same (𝑀, 𝑋) and (𝑀, 𝑌) marginals 
as 𝑝. It can be shown that the above is a convex optimization problem in the space of distributions, and is hence easily 
computed for discrete distributions with modest support. 

Next, we provide a brief overview of the grid cell code. Fiete et al. 
[2008], and later, Sreenivasan and Fiete [2011], described the distinctive 
“modulo code” employed by grid cells, and explained how this neural 
encoding scheme forms a robust error-correcting code. Grid cells are 
organized into multiple “grid networks”: each network forms a population 
code for the phase of the animal’s location within some fixed wavelength. 
Different networks have different wavelengths, which are “coprime” with 
respect to each other (see Fig. 1a). For a fixed precision, the number of 
locations these networks jointly encode can be as large as the product of 
their wavelengths (e.g., three grid networks with wavelengths 3, 4 and 5 
units can encode up to 60 locations with 1-unit precision in 1D). However, 
by choosing to use the same number of networks to encode a smaller 
range of locations (e.g., 12), the brain may introduce redundancy in 
encoding, and hence error resilience. For example, such a code may be 
robust to “readout error”, the error seen by a downstream neuron when 
decoding population activity. Based on the work of Sreenivasan and Fiete, 
we create a computational model of three grid networks, with wavelengths 
of 𝜆 = (3,4,5) units. We specify the joint distribution of the erroneous 
phase readout from these networks, given the animal’s location (see Fig. 
1b), and compute the PID for this code, as described above in equations 
(A) and (B). 

Fig 1. (a) Probability distributions of location, 
given readout phases of three grid networks 
with wavelengths 𝜆1=3 (blue), 𝜆2=4 (red), 𝜆3=5 
(yellow). Maximum total range is achieved for 
“coprime” wavelengths (here, the maximum 
range is 60 units). All three distributions peak 
simultaneously only at the animal’s true 
location. (b) Discretized von Mises distribution 
used to model the noisy grid network readout. 
The “circular variance” of this distribution 
parameterizes the amount of variability in the 
grid network’s readout (the maximum circular 
variance is 1, for the uniform distribution) 
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Results: For intuition, consider a simple classical error correcting code on boolean variables: we encode a 2-bit message 
𝑀 = (𝑋1, 𝑋2) as [𝑋1, 𝑋2, 𝑋3], where 𝑋3 = 𝑋1 ⊕ 𝑋2 and “⊕” represents “XOR”. Any two encoded bits suffice to decode 
𝑀, thus any 𝑋𝑖 carries redundant information about 𝑀 with respect to the other two variables. However, if we erase one of 
these three bits, the remaining two bits convey unique information about 𝑀 (e.g., if 𝑋2 is erased, 𝑋1 carries information about 
𝑀’s first bit, while 𝑋3 independently carries information about whether 𝑋1 and 𝑋2 are equal, which is not present in 𝑋1). 

We now examine the PID of the grid cell code in two separate instances. (1) First, we show how PID quantifies 
redundancy by comparing information content when the grid networks encode the whole range of possible locations, 𝑅 = 60 

units, and when they encode only a limited range, 𝑅 = 12 units, in an error-resilient manner: (i) When the networks encode 
location in a range of 𝑅 = 60 units, the message 𝑀 takes one of sixty values. Each network carries purely unique information 

about 𝑀 with respect to the other two: in particular, the 𝑖𝑡ℎ network (𝑖 = 1,2,3) carries log2(𝜆𝑖) bits of unique information, 
and the total mutual information is log2(60) ≈ 5.9 bits (Fig. 2a). As readout error increases, total mutual information drops 
significantly, losing >2 bits within an error variance of 0.15 squared-units. (ii) When the networks encode a limited range of 

𝑅 = 12 units, the 𝑖𝑡ℎnetwork carries zero unique information with respect to the others in the absence of noise, and instead 
carries log2(𝜆𝑖) bits of redundant information, as we saw with classical error correcting codes. As readout error increases, 
the total mutual information drops relatively gradually, losing only ~0.7 bits for the same variance (Fig. 2b). The redundant 
component of information drops more sharply however, while the unique component rises, indicating that error correction is 
in play. In particular, the presence of redundancy across networks prevents a sudden drop in total information. 

(2) Next, consider how the grid networks encode information about location at different spatial resolutions 𝑟, i.e., we 
divide 𝑅 = 60 units into bins of size 𝑟, and 𝑀 now indicates which bin the animal is located in. Having examined the PID at 
a fine resolution of 𝑟 = 1 unit in (i), we ask how the PID behaves at a very coarse resolution of 𝑟 = 30 units, i.e., in 
determining whether the animal is in the left or right half of the domain. We find that all three networks synergistically encode 
information about left vs. right. No two networks fully specify which half of the space the animal is in (see Fig. 3a). Thus, one 
needs the same number of networks (here, 3) to say whether the animal is in a given 1-unit region, or within a 30-unit region. 
This can be shown to be true, no matter what integer resolution we choose between 1 and 30. Further, without redundancy 
as in (ii), even information about coarse spatial location is highly susceptible to readout error, and small amounts of noise 
result in a sharp drop in total mutual information (see Fig. 3b). 
Conclusions: We examined two instances where the PID is able to provide a more nuanced understanding of how information 
is encoded by grid cells. In practice, estimates of the PID can be obtained for neural firing rates, however this could require 
significant amounts of data and computation, as it involves optimization over the high-dimensional space of distributions. 
Nevertheless, we expect this could be ameliorated by appropriate discretization, based on desired accuracy. 

Fig 2. PID of location between each grid network 
and the two others. (a) PID for the full encoding 
range, R=60 units. Note that all information is 
unique; information drops steadily with increase in 
error. (b) PID for a limited encoding range, R=12 
units. Information is initially redundant, but 
becomes unique as error increases. The drop in 
mutual information is slower than the drop in 
redundant information, indicating error correction. 

Fig 3. (a) Schematic depicting how no two networks 𝜆 = (3, 4, 5) 
fully specify even coarse spatial information, i.e. left vs. right 
(shaded area). Each row shows uncertainty in location given one 
or more grid networks’ readouts: 1-𝜆1, 2-𝜆2, 3-𝜆3, 4-(𝜆1, 𝜆2), 
5-(𝜆1, 𝜆3), 6-(𝜆2, 𝜆3), 7-(𝜆1, 𝜆2, 𝜆3). For larger wavelengths, 
probability of being inside or outside of the shaded region would be 
roughly equal, unless given all networks’ readouts. (b) PID of 
information about left vs. right: only synergistic information is 
present, quantitatively validating the schematic in (a). 
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